Numerical Investigation of Turbulent Magnetic Nanofluid Flow inside Straight Channels

Article Preview

Abstract:

A numerical study using computational fluid dynamics method with an approach of single phase has been presented in order to determine the effects of the concentration of the nanoparticles and flow rate on the convective heat transfer and friction factor in turbulent regime flowing through three different straight channels (straight, circular and triangular) with different Reynolds number (5000 ≤ Re ≤ 20000) using constant applied heat flux. The nanofluid was used consist of Fe3O4 magnetic nanoparticles with average diameter of (13nm) dispersed in water with four volume fraction (0, 0.2, 0.4, 0.6%). The results revealed that as volume fraction and Reynolds number increase Nusselt number increase and the heat transfer rate in circular cross section tube is better than that in square and triangular cross section channels.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-391

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Tran. 52 (2009) 3187-3196.

DOI: 10.1016/j.ijheatmasstransfer.2009.02.006

Google Scholar

[2] H. Demir, et al., Numerical investigation on the single phase forced convection heat transfer characteristics of TiO<sub> 2</sub> nanofluids in a double-tube counter flow heat exchanger, Int. Commun. Heat Mass. 38 (2011) 218-228.

DOI: 10.1016/j.icheatmasstransfer.2010.12.009

Google Scholar

[3] L. Godson, et al., Enhancement of heat transfer using nanofluids—an overview, Renewable and Sustainable Energy Reviews. 14 (2010) 629-641.

DOI: 10.1016/j.rser.2009.10.004

Google Scholar

[4] M.C.S. Reddy, V.V. Rao, Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts, Int. Commun. Heat Mass. 50 (2014) 68-76.

DOI: 10.1016/j.icheatmasstransfer.2013.11.002

Google Scholar

[5] J. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1 Clarendon Press, Oxford, UK. 1873.

Google Scholar

[6] J.C. Maxwell, A treatise on electricity and magnetism, Vol. 1.: Clarendon press. 1881.

Google Scholar

[7] V. Bianco, O. Manca, S. Nardini, Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube, Int. J. Therm. Sci. 50 (2011) 341-349.

DOI: 10.1016/j.ijthermalsci.2010.03.008

Google Scholar

[8] S. Murshed, K. Leong, C. Yang, A combined model for the effective thermal conductivity of nanofluids, Appl. Therm. Eng. 29 (2009) 2477-2483.

DOI: 10.1016/j.applthermaleng.2008.12.018

Google Scholar

[9] X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46 (2007) 1-19.

Google Scholar

[10] S.E.B. Maiga, et al., Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Fl. 26 (2005) 530-546.

DOI: 10.1016/j.ijheatfluidflow.2005.02.004

Google Scholar

[11] Q. Li, Y. Xuan, J. Wang, Investigation on convective heat transfer and flow features of nanofluids, J. Heat transf. 125 (2003) 151-155.

DOI: 10.1115/1.1532008

Google Scholar

[12] C. Tsai, et al., Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Mater. Lett. 58 (2004) 1461-1465.

DOI: 10.1016/j.matlet.2003.10.009

Google Scholar

[13] M.K. Moraveji, M. Hejazian, Modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe<sub> 3</sub> o<sub> 4</sub> magnetic nanofluid with computational fluid dynamics, Int. Commun. Heat Mass Trans. (2012).

DOI: 10.1016/j.icheatmasstransfer.2012.07.003

Google Scholar

[14] L. Syam Sundar, et al., Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe<sub> 3</sub> O<sub> 4</sub> magnetic nanofluid, Exp. Therm. Fluid Sci. 37 (2012) 65-71.

DOI: 10.1016/j.expthermflusci.2011.10.004

Google Scholar

[15] S.Z. Heris, et al., Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular duct, Nanoscale research letters, 6 (2011) 1-10.

DOI: 10.1186/1556-276x-6-179

Google Scholar

[16] J.A. Lopez, et al., Synthesis and characterization of Fe 3 O 4 magnetic nanofluid, Revista Latinoamericana de Metalurgia y Materiales. (2010) 60-66.

Google Scholar

[17] L. Syam Sundar, M.K. Singh, A. Sousa, Investigation of thermal conductivity and viscosity of Fe<sub> 3</sub> O<sub> 4</sub> nanofluid for heat transfer applications, Int. Commun. Heat Mass Trans. 44 (2013) 7-14.

DOI: 10.1016/j.icheatmasstransfer.2013.02.014

Google Scholar

[18] M.K. Moraveji, et al., Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics, Int. Commun. Heat Mass Trans. 38 (2011) 1291-1295.

DOI: 10.1016/j.icheatmasstransfer.2011.06.011

Google Scholar

[19] F.P. Incropera, A.S. Lavine, D.P. DeWitt, Fundamentals of heat and mass transfer, John Wiley & Sons (2011).

Google Scholar