Investigation of Inverse-Turbulent-Prandtl Number with Four RNG k Turbulence Models on Compressor Discharge Pipe of Bioenergy Micro Gas Turbine

Article Preview

Abstract:

Inverse-Turbulent Prandtl number (α) is an important parameter in RNG k-ε turbulence models since it affects the ratio of molecular viscosity and turbulent viscosity. In curved pipe, this highly affects the model prediction to a large range eddy-scale flow. According to Yakhot & Orzag, the α range from 1-1.3929 has not been investigated in detail in curved pipe flow (Yakhot & Orszag, 1986) and specific Re. This paper varied inverse-turbulent Prandtl number α to 1-1.3 in RNG k-ε turbulence model on cylindrical curved pipe in order to obtain the optimum value of α to predict unfully-developed flow in the curve with curve ratio R/D of 1.607. Analysis was conducted numericaly with inlet specified Re of 40900 which was generated from the experiment at α 1, 1.1, 1.2, 1.3. Wall surface roughness is not considered in this paper. With assumption that thermal diffusivity is always dominant to turbulent viscosity, higher Inverse-turbulent Prandtl number represent domination of turbulent viscosity to molecular viscosity of the flow and predict to have more interaction between large scale eddy to small scale eddy as well. The results show the use of α = 1.3 has increased the turbulent kinetic energy by 7% and the turbulent dissipation by 5% compared to general inverse-turbulent Prandtl number of 1. The value difference shows that the use of higher α on RNG turbulence model described more interaction between eddies in secondary and swirling flow at pipe curve at Re = 40900.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

392-400

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Speziale, R. So dan B. Younis, On the prediction of turbulent secondary flows, Hampton, Virginia, (1992).

Google Scholar

[2] A. Escue dan J. Cui, Comparison of Turbulence Models in Simulating Swirling Pipe Flows, Applied Mathematic Modelling, vol. 34, pp.2840-2849, (2010).

DOI: 10.1016/j.apm.2009.12.018

Google Scholar

[3] S. Berger dan L. Talbot, Flow in curved pipes, Ann. Rev. Fluid Mech, vol. 15, pp.4611-512, (1983).

Google Scholar

[4] H. Tennekes dan J. Lumley, A First Course In Turbulence, 3 rd penyunt., MIT Press, (1974).

Google Scholar

[5] B. Launder dan D. Spalding, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp.269-289, (1974).

DOI: 10.1016/0045-7825(74)90029-2

Google Scholar

[6] V. Yakhot dan S. A. Orszag, Renormalization Group Analysis of Turbulence. I. Basic Theory, Journal of Scientific Computing, vol. 1, no. 1, pp.3-51, (1986).

DOI: 10.1007/bf01061452

Google Scholar

[7] S. Thangam, Analysis of two-equation turbulence models for recirculating flows, ICASE Report No. 91-61; Contract No. NASI-18605, Langley, Virginia, (1991).

Google Scholar

[8] C. Hrenya, E. Bolio, D. Chakrabarti dan J. Sinclair, Comparison of Low Reynolds Number k-epsilon Turbulence Models in Predicting Fully Developed Pipe Flow, Chemical Engineering Science, vol. 50, no. 12, pp.1923-1941, (1995).

DOI: 10.1016/0009-2509(95)00035-4

Google Scholar

[9] A. Balabel dan W. El-Askary, On the performance of linear and non-linear k-e turbulence models in various jet applications, European Journal of Mechanics B/Fluids, vol. 30, pp.325-340, (2011).

DOI: 10.1016/j.euromechflu.2010.10.006

Google Scholar

[10] S. Darmawan, A. I. Siswantara dan Budiarso, Comparison of turbulence model on Reynolds numbers of a Proto X-2 Bioenergy Micro Gas Turbine's compressor discharge, dalam International Conference on Engineering of Tarumanagara, Jakarta, (2013).

Google Scholar

[11] S. Darmawan, Budiarso dan A. I. Siswantara, CFD Investigation of STD k-e and RNG k-e turbulence model in compressor discharge of proto x-2 bioenergy micro gas turbine, dalam The 8th FTEC, Yogyakarta, Indonesia, (2013).

DOI: 10.4028/www.scientific.net/amm.819.392

Google Scholar

[12] H. Versteeg dan W. Malalasekara, An Introduction to Computational Fluid Dynamics, The Finite Volume Method, 2 penyunt., Essex: Pearson Educational Limited, (2007).

Google Scholar

[13] F. Inc., Fluent 6. 3 User's Guide, Lebanon, (2006).

Google Scholar

[14] Budiarso, A. I. Siswantara dan S. Darmawan, Secondary Flow pada pipa keluar kompresor Turbin Gas Mikro Bioenergi Proto X-2: Analisis dengan model turbulen STD k-e dan RNG k-e, dalam SNTTM (Seminar Nasional Tahunan Teknik Mesin) XII, Bandar Lampung, (2013).

DOI: 10.35814/asiimetrik.v4i1.3100

Google Scholar

[15] TM-107, Introduction to the Renormalization Group Method and Turbulence Modeling, Fluent Inc., Lebanon, (1993).

Google Scholar

[16] S. Thangam dan C. Speziale, Turbulent Flow Past a Backward-Facing Step: A Critical Evaluation of Two-Equation Models, AIAA Journal, vol. 30, no. 5, (1992).

DOI: 10.2514/3.48951

Google Scholar

[17] S. Khani dan M. L. Waite, Effective eddy viscosity in stratified turbulence, Journal of Turbulence, vol. 14, no. 7, pp.49-70, (2013).

DOI: 10.1080/14685248.2013.837913

Google Scholar

[18] A. Noorani, G. E. Khoury dan P. Schlatter, Evolution of turbulence characteristics from straight to curved pipes, International Journal of Heat and Fluid Flow, vol. 41, pp.16-26, (2013).

DOI: 10.1016/j.ijheatfluidflow.2013.03.005

Google Scholar

[19] M. Ould-Rouiss, L. Redjem-Saad, G. Lauriat dan A. Mazouz, Effect of Prandtl number on the turbulent thermal field in annular pipe flow, International Communications in Heat and Mass Transfer, vol. 37, no. 8, pp.958-963, (2010).

DOI: 10.1016/j.icheatmasstransfer.2010.06.027

Google Scholar

[20] V. Yakhot, S. A. Orszag dan A. Yakhot, Heat transfer in turbulent fluids - I. Pipe flow, Int. J. Heat Mass Transfer, vol. 30, no. 1, pp.15-22, (1987).

DOI: 10.1016/0017-9310(87)90057-3

Google Scholar

[21] S. Lam, On The RNG Theory of Turbulence, Physics of Fluids A, vol. 4, pp.1007-1017, (1992).

Google Scholar

[22] E. M. Marshall dan A. Bakker, Computational Fluid Mixing, Lebanon, New Hamphsire: John Wiley & Sons, Inc., (2003).

Google Scholar

[23] J. Blazek, Computational Fluid Dynamics: Principles and Application, Hungary: Elsevier, (2005).

Google Scholar

[24] V. Yakhot, S. Orszag, S. Thangam, T. Gatski dan C. Speziale, Development of turbulence model for shear flows by a double expansion technique, Phys. Fluid A, vol. 4, no. 7, pp.1510-1520, (1992).

DOI: 10.1063/1.858424

Google Scholar

[25] B. R. Munson, D. F. Young, T. H. Okiishi dan W. W. Huebsch, Fundamentals of fluid mechanics, 6th penyunt., John Wiley & Sons, Inc., (2009).

Google Scholar

[26] F. Chen, X. Huai, J. Cai, X. Li dan R. Meng, Investigation on the applicability of turbulent-Prandtl-number models for the liquid lead-bismuth eutectic, Nuclear Engineering and Design, vol. 257, pp.128-133, (2013).

DOI: 10.1016/j.nucengdes.2013.01.005

Google Scholar