Mitigating Impact Frailty of Concrete with Fiber Reinforcement

Article Preview

Abstract:

Since 9/11, there has been an increased interest in developing a better understanding of the properties of concrete structures under impact and blast loading. Although concrete, as a material, demonstrates extreme brittleness under dynamically applied loads, fortunately, fiber reinforcement significantly enhances such resistance. Yet, the dynamic properties of both concrete and fiber reinforced concrete (FRC) remain poorly understood. This paper provides a historical perspective of our efforts aimed at understanding the impact resistance of fiber reinforced concrete, highlights some of the issues and challenges encountered and identifies the emerging areas where further research is necessary.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-35

Citation:

Online since:

July 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Comite Euro-International du Beton (CEB), Bulletin 187 (1988)

Google Scholar

[2] D.L. Grote et al., Int. J. Impact Engineering, 25, 869-910 (2001).

Google Scholar

[3] E. Cadoni, A. Meda and G. A. Plizzari, Materials and Structures 42 (9), 1283-1294, (2009).

Google Scholar

[4] A.J. Zielinski and H.W. Reinhardt, Cem. & Conc. Res. 12, 309-319(1982).

Google Scholar

[5] N. Banthia, S. Mindess, A. Bentur and M. Pigeon, Expt. Mech., 29 (2) 63-69 (1989).

Google Scholar

[6] W. Suaris and S.P. Shah, Composites, 13, 153-159 (1982).

Google Scholar

[7] V.S. Gopalaratnam et al., Experimental Mechanics, 24, 102-111 (1984).

Google Scholar

[8] U. Gokoz, and A.E. Naaman, Int. J. Cement Composites, 3 (3) 187-202 (1981).

Google Scholar

[9] W.L. Server, Journal of Testing & Evaluation, ASTM, 6 (1) 28-34 (1978).

Google Scholar

[10] P. Gupta et al., Journal of Materials in Civil Engrg., ASCE, 12 (1) 81-90 (2000).

Google Scholar

[11] N. Banthia et al., SEM/RILEM Int. Conf. on Fract. of Concrete & Rock, 26-36 (1987).

Google Scholar

[12] V. Bindiganavile and N. Banthia, N., ACI-SP "FRC: Innovations for Value", in press.

Google Scholar

[13] V. Bindiganavile and N. Banthia, Proceedings, CONSEC'01, 1 589-596 (2001).

Google Scholar

[14] N. Banthia and J.-F. Trottier, Cement and Concrete Res, 21, 158-168 (1991).

Google Scholar

[15] A. Pacios, C. Ouyang, and S.P. Shah, Mater. & Struct., RILEM, 28, 83-91 (1995).

Google Scholar

[16] J.-F. Trottier and M. Mahoney, Concrete International, 23 (6) 23-28 (2001).

Google Scholar

[17] V. Bindiganavile and N. Banthia, ACI, Materials Journal, 98 (1) 10-16 (2001).

Google Scholar

[18] A. Hillerborg et al, Cement and Concrete Research, 6, 773-82 (1976).

Google Scholar

[19] Y.S. Jeng and S.P. Shah, ASCE J of Eng. Mech., 111 (10) 1227-41(1985).

Google Scholar

[20] A.Hillerborg, Cement and Concrete Composites, 2 177-84 (1980).

Google Scholar

[21] S. Mindess et al, Cement and Concrete Research, 7, 731-742 (1977).

Google Scholar

[22] B. Mobasher, C. Ouyang. and S.P. Shah, Int. J. of Fracture, 50 199-219, (1991).

Google Scholar

[23] H.W. Reinhardt, Materials Research Society, Proc. 64, 1-14 (1985).

Google Scholar

[24] S. Mindess et al, Materials Research Society, Proc. 64, 217-224 (1985).

Google Scholar

[25] J.-H. Yon, N. Hawkins ACI Mat. J., 88 (5) 470-479 (1991).

Google Scholar

[26] D. L. Birkimer, Proc.: 12th Symp. on Pock Mechanic, 573-589 (1971).

Google Scholar

[27] A.J. Zielinsky, Ph.D Thesis, TU Delft, (1982).

Google Scholar

[28] S. Mindess and J.S. Nadeau, Am. Cer. Soc. Bull., 56, 429-430 (1977).

Google Scholar

[29] N. Banthia et al., Mat. And Struc. (RILEM), 20, 293-302 (1987).

Google Scholar

[30] D. Watstein, J. of ACI, 49, 729-756 (1953).

Google Scholar

[31] R. H. Evans, J. of Inst. Of Civil Engrs, 18, 296 (1942).

Google Scholar

[32] B. Hughes et al., Magazine of Concrete Res., 24, 25-36 (1972).

Google Scholar

[33] C.A. Ross, ASME, Proc: Pressure Vessels & Piping Conf., 255-262 (1997).

Google Scholar

[34] P.H. Bischoff and S.H. Perry, ASCE J. of Eng. Mech, 121, 6, 685-693 (1995).

Google Scholar

[35] S.P. Shah and R. John, Materials Research Society, Proc. 64, 21-37 (1985).

Google Scholar

[36] CEB Comité Euro-International du Béton, CEB-FIP MODEL CODE 1990 (1990).

DOI: 10.1680/ceb-fipmc1990.35430

Google Scholar

[37] L.J. Malvar and C.A. Ross, ACI Materials Journal, 95(6): 735-739 (1998).

Google Scholar

[38] M. T. Islam and V. Bindiganavile, CSCE 2010 Conference, Winnipeg, Manitoba (2010).

Google Scholar

[39] T.G. Fédération-internationale-du-béton, Constitutive Modelling of High Strength / High Performance Concrete, in Bulletin (Fédération internationale du béton) H.S. Muller, Lausanne, Switzerland, (2008).

Google Scholar

[40] S. Wang, M.H. Zhang and S.T. Quek, Compressive Behavior of High-performance Fiber-Reinforced Concrete Subjected to High Strain-Rate Loading, in preparation.

DOI: 10.4028/www.scientific.net/amm.82.57

Google Scholar

[41] S..G. Millard, T.C.K. Molyneaux, S.J. Barnett and X. Gao, Int. J. of Impact Engineering, 37, 405-413, (2010).

Google Scholar

[42] G.W. Kaadi, MS Thesis, The University of Illinois, Chicago, (1983).

Google Scholar

[43] K. Visalvanich and A.E. Naaman, ACI Journal, 80, 2, 128-138 (1983).

Google Scholar

[44] Bindiganavile, V., PhD Thesis, The University of British Columbia, Canada (2003).

Google Scholar

[45] H. Armelin and N. Banthia, ACI Mat. J., 94 (1), 18-31 (1997).

Google Scholar