[1]
A.M. Lyapunov, The General Problem of the Stability of Motion (Doctoral dissertation), University of Kharkov, 1892 (in Russian).
Google Scholar
[2]
R.M. Rosenberg, Normal modes of non-linear dual-mode systems. Jour. Applied Mechanics, 27 (1960) 263-268.
Google Scholar
[3]
R.M. Rosenberg, On non-linear vibrations of systems with many degrees of freedom. Advances in Applied Mechanics, 9 (1966) 155-242.
DOI: 10.1016/s0065-2156(08)70008-5
Google Scholar
[4]
R. Rand, Non-linear normal modes in two-degree-of-freedom system. Jour. of Applied Mechanics, 6 (1971) 545-547.
DOI: 10.1016/0020-7462(71)90049-7
Google Scholar
[5]
R. Devaney, Homoclinic orbits in Hamiltonian systems. Jour. Differential Equations, 21 (1976) 431-438.
DOI: 10.1016/0022-0396(76)90130-3
Google Scholar
[6]
J. Carr, Applications of Centre Manifold Theory. Springer, Berlin, Heidelberg, (1981).
Google Scholar
[7]
P. Boxler, A stochastic version of center manifold theory. Probability Theory and Related Fields, 83(4) (1989) 509-545.
DOI: 10.1007/bf01845701
Google Scholar
[8]
A.F. Vakakis, T. Nayfeh, M. King, A multiple-scales analysis of non-linear, localized modes in a cyclic periodic system. Transactions of the ASME, 60 (1993) 388-397.
DOI: 10.1115/1.2900806
Google Scholar
[9]
A.F. Vakakis, Non-linear normal modes (NNMs) and their applications in vibrati8on theory: an overwiev. Mechanical Systems and Signal Processing, 11(1) (1997) 3-22.
DOI: 10.1006/mssp.1996.9999
Google Scholar
[10]
A.H. Nayfeh, S.A. Nayfeh, On nonlinear modes of continuous systems. Jour. Vibration and Acoustics, 116 (1994) 129-136.
DOI: 10.1115/1.2930388
Google Scholar
[11]
A.H. Nayfeh, C. Chin, S.A. Nayfeh, Nonlinear normal modes of a cantilever beam. Jour. Vibration and Acoustics, 117 (1995) 477-481.
DOI: 10.1115/1.2874486
Google Scholar
[12]
S.W. Shaw, Normal modes of vibration for non-linear continuous systems. Jour. Sound and Vibration, 169(3) (1994) 319-347.
DOI: 10.1006/jsvi.1994.1021
Google Scholar
[13]
M.E. King, A.F. Vakakis, A very complicated structure of resonances in a non-linear system with cyclic symmetry: non-linear forced localization. Nonlinear Dynamics, 7 (1995) 85-104.
DOI: 10.1007/bf00045127
Google Scholar
[14]
M.S. Jolly, R. Rosa, Computation of non-smooth local centre manifolds. IMA Journal of Numerical Analysis, 25(4) (2005) 698-725.
DOI: 10.1093/imanum/dri013
Google Scholar
[15]
S. Lenci, G. Rega, Dimension reduction of homoclinic orbits of buckled beams via the non-linear modes technique. Int. Jour. Non-Linear Mechanics, 42 (2007) 515-528.
DOI: 10.1016/j.ijnonlinmec.2007.02.004
Google Scholar
[16]
G. Kerschen, M. Peeters, J.C. Golinval, A.F. Vakakis, Non-linear normal modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23 (2009) 170-194.
DOI: 10.1016/j.ymssp.2008.04.002
Google Scholar
[17]
D. Jiang, C. Pierre, S.W. Shaw, The construction of non-linear normal modes for systems with internal resonance. Int. Jour. Non-Linear Mechanics, 40 (2009) 729-746.
DOI: 10.1016/j.ijnonlinmec.2004.08.010
Google Scholar
[18]
A.F. Vakakis(edt. ), Normal Modes and Localization in Non-Linear Systems. Kluwer, Dordrecht, (2001).
Google Scholar
[19]
J. Náprstek, Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems. Jour. Sound and Vibration, 338 (2015) 2-41.
DOI: 10.1016/j.jsv.2014.06.029
Google Scholar
[20]
G. Iooss, M. Adelmeyer, Topics in Bifurcation Theory and Applications. World Scientific Publishing, London, (1992).
Google Scholar
[21]
Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory (3rd edition). Springer, Berlin, Heidelberg, New York, (2004).
Google Scholar
[22]
G.W. Whitehead, Elements of homotopy theory. Springer, Berlin, Heidelberg, (1978).
Google Scholar
[23]
M. Byrtus, V. Zeman, Alternative methods for vibration analysis of friction blade coupling. In: Proc. Dynamics of Machines 2012 (L. Pešek edt. ), IT ASCR, Prague, 2012, pgs. 23-28.
Google Scholar
[24]
A.F. Vakakis, L.I. Manevitch, Y.V. Mikhlin, V.N. Pilipchuk, A.A. Zevin, Normal modes and localization in non-linear systems. Wiley, New York, (1996).
DOI: 10.1002/9783527617869
Google Scholar
[25]
A. Weinstein, Normal modes for nonlinear Hamiltonian systems. Investigations in Mathematics, 20 (1973) 47-57.
Google Scholar
[26]
J.K. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Communications in Pure and Applied Mathematics, 29 (1976) 727-747.
DOI: 10.1002/cpa.3160290613
Google Scholar
[27]
N. Bogolyubov, Y. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations. Gordon & Breach Scientific Publication, New York, (1961).
Google Scholar