Finite Elements Modeling of Mechanical and Acoustic Properties of a Ceramic Metamaterial Assembled by Robocasting

Article Preview

Abstract:

Finite element modeling (FEM) was used for numerical simulations of mechanical performance of aperiodic silicon-carbide scaffold manufactured by robocasting. The FEM approach enabled reliable calculation of theeffective anisotropic elastic properties of the scaffold at the macro-scale, as well as of the acoustic band structureindicating the metamaterial-like behavior of the material at the micro-scale. In addition, the micromechanics of thescaffold was discussed based on the outputs of the model: the mechanisms of the extremely soft shearing modes wereidentified and the corresponding stress concentrations arising at the contact points in the scaffold were analyzedwith respect to the possible failure modes of the robocast structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

364-371

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Smay, G. Gratson, R. Shepherd, J. Cesarano, J. Lewis, Directed colloidal assembly of 3D periodic structures, Adv. Mater. 14 (2002) 1279-1283.

DOI: 10.1002/1521-4095(20020916)14:18<1279::aid-adma1279>3.0.co;2-a

Google Scholar

[2] J.E. Smay, J.A. Lewis, Solid Free-Form Fabrication of 3-D Ceramic Structures, in: N.P. Bansal, A.R. Boccaccini (Eds. ), Ceramics and Composites Processing Methods, John Wiley and Sons, Hoboken, 2012, pp.459-484.

DOI: 10.1002/9781118176665.ch13

Google Scholar

[3] K. Cai, B. Román-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, P. Miranzo, Geometrically Complex Silicon Carbide Structures Fabricated by Robocasting, J. Am. Ceram. Soc. 95 (2012) 2660-2666.

DOI: 10.1111/j.1551-2916.2012.05276.x

Google Scholar

[4] B. Román-Manso, S.M. Vega-Díaz, A. Morelos-Goméz, M. Terrones, P. Miranzo, M. Belmonte, Aligned carbon nanotube/silicon carbide hybrid materials with high electrical conductivity, superhydrophobicity and superoleophilicity, Carbon 80 (2014).

DOI: 10.1016/j.carbon.2014.08.046

Google Scholar

[5] P. Miranda, E. Saiz, K. Gryn, A.P. Tomsia, Sintering and robocasting of β−tricalcium phosphate scaffolds for orthopaedic applications, Acta Biomater. 2 (2006) 457-466.

DOI: 10.1016/j.actbio.2006.02.004

Google Scholar

[6] A. Kruisová, H. Seiner, P. Sedlák, M. Landa, B. Román-Manso, P. Miranzo, M. Belmonte, Metamaterial behavior of three-dimensional periodic architectures assembled by robocasting, Appl. Phys. Letters 105 (2014) 211904.

DOI: 10.1063/1.4902810

Google Scholar

[7] R.V. Craster, S. Guenneau, editors, Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, Springer Series in Materials Science Vol. 166, Springer, London, (2013).

DOI: 10.1007/978-94-007-4813-2

Google Scholar

[8] A. Briggs, Acoustic Microscopy, Claredon Press, Oxford, (1992).

Google Scholar

[9] COMSOL multiphysics user's guide. Version 3. 5a; (2008).

Google Scholar

[10] Xia, Z., Zhang, Y., Ellyin, F. A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct., 40 (2003), 1907-(1921).

DOI: 10.1016/s0020-7683(03)00024-6

Google Scholar

[11] R.G. Leisure, F.A. Willis, Resonant Ultrasound Spectroscopy, J. Phys.: Condens. Matter 9 (1997) 6001-6029.

DOI: 10.1088/0953-8984/9/28/002

Google Scholar

[12] P. Sedlák, H. Seiner, J. Zídek, M. Janovská, M. Landa. Determination of All 21 Independent Elastic Coefficients of Generally Anisotropic Solids by Resonant Ultrasound Spectroscopy: Benchmark Examples, Exp. Mech. 54 (2014) 1073-1085.

DOI: 10.1007/s11340-014-9862-6

Google Scholar

[13] T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd edition, Taylor & Francis CRC Press, Boca Raton, (2004).

Google Scholar

[14] P. Miranda, A. Pajares, E. Saiz, A.P. Tomsia, F. Guiberteau, Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting, J. Biomed. Mater. Res. A 83 (2007) 646-655.

DOI: 10.1002/jbm.a.31272

Google Scholar

[15] M. Genet, M. Houmard, S. Eslava, E. Saiz, A. P. Tomsia, A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits, J. Eur. Ceram. Soc. 33 (2013) 679-688.

DOI: 10.1016/j.jeurceramsoc.2013.01.014

Google Scholar

[16] T. Koudelka, T. Krejčí, J. Kruis, Moderate Use of Object Oriented Programming for Scientific Computing, in B.H. V. Topping, J.M. Adam, F.J. Pallarés, R. Bru, M.L. Romero (Eds. ), Proceedings of the Seventh International Conference on Engineering Computational Technology, CivilComp Press, Stirlingshire, 2010, 68.

DOI: 10.4203/ccp.94.68

Google Scholar

[17] E. Rohan, B. Miara, F. Seifrt, Numerical simulation of acoustic band gaps in homogenized elastic composites, Int. J. Eng. Sci. 47 (2009) 573-594.

DOI: 10.1016/j.ijengsci.2008.12.003

Google Scholar

[18] V. P. Smyshlyaev, Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater. 41 (2009) 434-447.

DOI: 10.1016/j.mechmat.2009.01.009

Google Scholar

[19] J.P. Wolfe, Imaging Phonons (Acoustic Wave Propagation in Solids), Cambridge University Press, Cambridge, (1998).

Google Scholar