[1]
M.N. Gungor, M.A. Imam, F.H. Froes, Innovations in Titanium Technology, Wiley's Publishing, Warrendale, (2007).
Google Scholar
[2]
F.H. Froes, Titanium Alloys, in: K.H.J. Buschow, R.W. Cahn (Eds. ) Encyclopedia of Materials Science and Engineering Chapter, Elsevier, Oxford, 2001, pp.9364-9373.
Google Scholar
[3]
J.K. Wessel, F.H. Froes, Titanium Alloys, in: Handbook of Advanced Materials, Wiley-Interscience Publishing House, New York, (2004).
Google Scholar
[4]
C. Veiga, J.P. Davim, A.J. R Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci. 32 (2012) 133-148.
Google Scholar
[5]
F. H Froes, H. Friedrich, J. Kiese, D. Bergoint, Titanium in the family automobile: the cost challenge, JOM, 56 (2004) 40-44.
DOI: 10.1007/s11837-004-0144-0
Google Scholar
[6]
C. E Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, M. Mabuchi, Processing and technical properties of autogenous titanium implant materials, J. Mat. Sci., 13 (2002) 397-401.
DOI: 10.1023/a:1014344819558
Google Scholar
[7]
R. C. Hummel, Titanium, Cambridge Scientific Abstract, 2000, http: /www. csa. com/discoveryguides/titanium/overview. php.
Google Scholar
[8]
F.H. Froes, M.N. Gungor, M.A. Iman, Cost Affordable Titanium—An Update, Innovations in Titanium, The Minerals, Metals & Materials Society, Wiley's Publishing, Warrendale, (2007).
Google Scholar
[8]
F.H. Froes, M.A. Iman, Cost Affordable Developments in Titanium Technology and Applications, Affordable Titanium III, Trans Tech Publications, Zurich, (2010).
Google Scholar
[9]
F.H. Froes, S.H. Mashl, J.C. Hebeisen, V.S. Moxson, V. A Duz, The technologies of titanium powder metallurgy, JOM, 56 (2004) 46-48.
DOI: 10.1007/s11837-004-0252-x
Google Scholar
[10]
C.A. Lavender, V.S. Moxson, V.A. Duz, Cost-Effective Production of Powder Metallurgy Titanium Components for High-Volume Commercial Applications, 2010, http: /www. pnl. gov/main/publications/external/technical_reports/PNNL-19932. pdf.
DOI: 10.2172/1009762
Google Scholar
[11]
F.H. Froes, Powder Metallurgy of Titanium Alloys, Advances in Powder Metallurgy, Woodhead Publishing Ltd. Cambridge, (2013).
DOI: 10.1533/9780857098900.2.202
Google Scholar
[12]
F. H Froes, Titanium Powder Metallurgy: A Review – Part 1, Adv. Mats. & Process., 22 (2012) 16-22.
Google Scholar
[13]
G.J. Kipouros, W.F. Caley, D.P. Bishop, On the advantages of using powder metallurgy in new light metal alloy design, Metall. Mater. Trans. A, 37 (2006) 3429–3436.
DOI: 10.1007/s11661-006-1037-3
Google Scholar
[14]
R.M. German, Progress in titanium metal powder injection molding, Mater., 6(2013) 3641-3662.
DOI: 10.3390/ma6083641
Google Scholar
[15]
M. Qian, Cold Compaction and Sintering of Titanium and Its Alloys for Near-Net-Shape or Preform Fabrication, Int J. Powder Metall., 46 (2010) 29-45.
Google Scholar
[16]
R.M. German, Status of Metal Powder Injection Molding of Titanium, Int J. Powder Metall. 46(2010)11-22.
Google Scholar
[17]
J.L. Ong, D.L. Carnes, K. Bessho, Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo, Biomat., 25 (2004) 4601–4606.
DOI: 10.1016/j.biomaterials.2003.11.053
Google Scholar
[19]
L. Bolzoni, E.M. Ruiz-Navas, E. Gordo, Processing of Elemental Titanium by PM Techniques, Mater. Sci. Forum, 765 (2013) 3 83-387.
DOI: 10.4028/www.scientific.net/msf.765.383
Google Scholar
[20]
H. Izui, G. Kikuchi, Sintering performance and mechanical properties of titanium compacts prepared by spark plasma sintering, Mater. Sci. Forum, 706 (2012) 217–221.
DOI: 10.4028/www.scientific.net/msf.706-709.217
Google Scholar
[21]
C.A. Lavender, K.S. Weil, Automotive Metals – Titanium, Low-Cost Titanium Powder for Feedstock, Contract No.: DE-AC05-76RL01830, 2014, http: /energy. gov/sites/prod/files/2014/04/f14/4_automotive_metals-titanium. pdf.
Google Scholar
[22]
C.G. McCracken, C. Motchenbacher, D.P. Barbis, Review of Titaniumpowder-production Methods, Int. J. of Powder Metall., 46 (2010) 19-29.
Google Scholar
[23]
Pascu, C.I., Gingu, O., Rotaru, P., Vida-Simiti, I., Harabor, A., Lupu,N., Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder, J. Therm. Anal. Calorim., 113 (2013).
DOI: 10.1007/s10973-012-2824-2
Google Scholar
[24]
H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J. M. Zhang, Q. Zhao, Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mat., 436 (2010) 157-163.
DOI: 10.4028/www.scientific.net/kem.436.157
Google Scholar
[25]
M.B. Novikova, A.M. Ponomarenko, Kinetics of oxidation of Titanium Hydride Powder, Met. Sci. Heat Treat., 50 (2008) 355-358.
DOI: 10.1007/s11041-008-9072-x
Google Scholar
[26]
J.J. Xu, H.Y. Cheung, S.Q. Shi, Mechanical properties of titanium hydride. J. Alloy Compd., 436(2007) 82–85.
Google Scholar
[27]
V. Bhosle, E.G. Baruraj, M. Miranova, K. Salama, Dehydrogenation of nanocrystalline TiH2 and consequent consolidation to form dense Ti, Metall. Mater. Trans A, 27 (2003) 2793-2799.
DOI: 10.1007/s11661-003-0180-3
Google Scholar
[28]
A. Ibrahima, F. Zhangb, E. Ottersteinb, E. Burkelb, Processing of porous Ti and Ti5Mn foams by spark plasma sintering, Mater. Design, 32 (2011) 146–153.
DOI: 10.1016/j.matdes.2010.06.019
Google Scholar
[29]
Y. Xiangqing, H. Bian, G. Qin, W. Wang, Y. Zhen, Z. Limin, L. Zhengmin, Hydrogen absorption and desorption properties of titanium, Information on; http: /www. paper. edu. cn/en/paper. php. serial_number=200811-490.
Google Scholar