Research about the Quality of Bulk Titanium Materials Obtained by Powder Metallurgy Technology from Titanium Hydride Powder Used for Automotive Components

Article Preview

Abstract:

Titanium has excellent mechanical properties, low density, high chemical stability, good heat transfer properties and a good corrosion resistance. In recent years, a new process technology is emerging by which titanium and titanium alloys can be made by sintering titanium hydride (TiH2) and its mixture with alloying elements. The feasibility of this manufacturing approach has been fully demonstrated from powder to sintering and from microstructure to mechanical properties. This paper describes a study concerning Powder Metallurgy (PM) technology processing of Ti by conventional PM and non-conventional PM method such as Spark Plasma Sintering (SPS) route. The influence of the technological parameters on the micro-hardness and SEM microstructures during bulk titanium materials processing has been studied. The STATISTICA program has been used to monitor the influence of the technological parameters on the micro-hardness of bulk titanium processed products. The tribological behaviour of the bulk titanium materials on the basis of the coefficient of friction and wear rate is presented, too.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

418-428

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.N. Gungor, M.A. Imam, F.H. Froes, Innovations in Titanium Technology, Wiley's Publishing, Warrendale, (2007).

Google Scholar

[2] F.H. Froes, Titanium Alloys, in: K.H.J. Buschow, R.W. Cahn (Eds. ) Encyclopedia of Materials Science and Engineering Chapter, Elsevier, Oxford, 2001, pp.9364-9373.

Google Scholar

[3] J.K. Wessel, F.H. Froes, Titanium Alloys, in: Handbook of Advanced Materials, Wiley-Interscience Publishing House, New York, (2004).

Google Scholar

[4] C. Veiga, J.P. Davim, A.J. R Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci. 32 (2012) 133-148.

Google Scholar

[5] F. H Froes, H. Friedrich, J. Kiese, D. Bergoint, Titanium in the family automobile: the cost challenge, JOM, 56 (2004) 40-44.

DOI: 10.1007/s11837-004-0144-0

Google Scholar

[6] C. E Wen, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, M. Mabuchi, Processing and technical properties of autogenous titanium implant materials, J. Mat. Sci., 13 (2002) 397-401.

DOI: 10.1023/a:1014344819558

Google Scholar

[7] R. C. Hummel, Titanium, Cambridge Scientific Abstract, 2000, http: /www. csa. com/discoveryguides/titanium/overview. php.

Google Scholar

[8] F.H. Froes, M.N. Gungor, M.A. Iman, Cost Affordable Titanium—An Update, Innovations in Titanium, The Minerals, Metals & Materials Society, Wiley's Publishing, Warrendale, (2007).

Google Scholar

[8] F.H. Froes, M.A. Iman, Cost Affordable Developments in Titanium Technology and Applications, Affordable Titanium III, Trans Tech Publications, Zurich, (2010).

Google Scholar

[9] F.H. Froes, S.H. Mashl, J.C. Hebeisen, V.S. Moxson, V. A Duz, The technologies of titanium powder metallurgy, JOM, 56 (2004) 46-48.

DOI: 10.1007/s11837-004-0252-x

Google Scholar

[10] C.A. Lavender, V.S. Moxson, V.A. Duz, Cost-Effective Production of Powder Metallurgy Titanium Components for High-Volume Commercial Applications, 2010, http: /www. pnl. gov/main/publications/external/technical_reports/PNNL-19932. pdf.

DOI: 10.2172/1009762

Google Scholar

[11] F.H. Froes, Powder Metallurgy of Titanium Alloys, Advances in Powder Metallurgy, Woodhead Publishing Ltd. Cambridge, (2013).

DOI: 10.1533/9780857098900.2.202

Google Scholar

[12] F. H Froes, Titanium Powder Metallurgy: A Review – Part 1, Adv. Mats. & Process., 22 (2012) 16-22.

Google Scholar

[13] G.J. Kipouros, W.F. Caley, D.P. Bishop, On the advantages of using powder metallurgy in new light metal alloy design, Metall. Mater. Trans. A, 37 (2006) 3429–3436.

DOI: 10.1007/s11661-006-1037-3

Google Scholar

[14] R.M. German, Progress in titanium metal powder injection molding, Mater., 6(2013) 3641-3662.

DOI: 10.3390/ma6083641

Google Scholar

[15] M. Qian, Cold Compaction and Sintering of Titanium and Its Alloys for Near-Net-Shape or Preform Fabrication, Int J. Powder Metall., 46 (2010) 29-45.

Google Scholar

[16] R.M. German, Status of Metal Powder Injection Molding of Titanium, Int J. Powder Metall. 46(2010)11-22.

Google Scholar

[17] J.L. Ong, D.L. Carnes, K. Bessho, Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo, Biomat., 25 (2004) 4601–4606.

DOI: 10.1016/j.biomaterials.2003.11.053

Google Scholar

[19] L. Bolzoni, E.M. Ruiz-Navas, E. Gordo, Processing of Elemental  Titanium  by PM Techniques, Mater. Sci. Forum, 765 (2013) 3 83-387.

DOI: 10.4028/www.scientific.net/msf.765.383

Google Scholar

[20] H. Izui, G. Kikuchi, Sintering performance and mechanical properties of titanium compacts prepared by spark plasma sintering, Mater. Sci. Forum, 706 (2012) 217–221.

DOI: 10.4028/www.scientific.net/msf.706-709.217

Google Scholar

[21] C.A. Lavender, K.S. Weil, Automotive Metals – Titanium, Low-Cost Titanium Powder for Feedstock, Contract No.: DE-AC05-76RL01830, 2014, http: /energy. gov/sites/prod/files/2014/04/f14/4_automotive_metals-titanium. pdf.

Google Scholar

[22] C.G. McCracken, C. Motchenbacher, D.P. Barbis, Review of Titaniumpowder-production Methods, Int. J. of Powder Metall., 46 (2010) 19-29.

Google Scholar

[23] Pascu, C.I., Gingu, O., Rotaru, P., Vida-Simiti, I., Harabor, A., Lupu,N., Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder, J. Therm. Anal. Calorim., 113 (2013).

DOI: 10.1007/s10973-012-2824-2

Google Scholar

[24] H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J. M. Zhang, Q. Zhao, Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mat., 436 (2010) 157-163.

DOI: 10.4028/www.scientific.net/kem.436.157

Google Scholar

[25] M.B. Novikova, A.M. Ponomarenko, Kinetics of oxidation of Titanium Hydride Powder, Met. Sci. Heat Treat., 50 (2008) 355-358.

DOI: 10.1007/s11041-008-9072-x

Google Scholar

[26] J.J. Xu, H.Y. Cheung, S.Q. Shi, Mechanical properties of titanium hydride. J. Alloy Compd., 436(2007) 82–85.

Google Scholar

[27] V. Bhosle, E.G. Baruraj, M. Miranova, K. Salama, Dehydrogenation of nanocrystalline TiH2 and consequent consolidation to form dense Ti, Metall. Mater. Trans A, 27 (2003) 2793-2799.

DOI: 10.1007/s11661-003-0180-3

Google Scholar

[28] A. Ibrahima, F. Zhangb, E. Ottersteinb, E. Burkelb, Processing of porous Ti and Ti5Mn foams by spark plasma sintering, Mater. Design,  32 (2011) 146–153.

DOI: 10.1016/j.matdes.2010.06.019

Google Scholar

[29] Y. Xiangqing, H. Bian, G. Qin, W. Wang, Y. Zhen, Z. Limin, L. Zhengmin, Hydrogen absorption and desorption properties of titanium, Information on; http: /www. paper. edu. cn/en/paper. php. serial_number=200811-490.

Google Scholar