[1]
G. Lutjering, J.C. Williams, In: Titanium: Engineering Materials and Processes firsted, Springer Publishing, Manchester, (2003).
Google Scholar
[2]
L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, E. Gordo, Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders, J. Mech. Behav. Biomed. Mater. 14 (2012) 29-38.
DOI: 10.1016/j.jmbbm.2012.05.013
Google Scholar
[3]
M.N. Gungor, M.A. Imam, F.H. Froes, Innovations in Titanium Technology, Wiley's Publishing, Warrendale, (2007).
Google Scholar
[4]
C. Veiga, J.P. Davim, A.J. R Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci. 32 (2012) 133-148.
Google Scholar
[5]
H. Fujii, K. Takahashi, Y. Yamashita, Application of Titanium and Its Alloys for Automobile Parts, Nippon Steel Tech. Report. 88 (2003) 70-75.
Google Scholar
[6]
Yamashita, Y., Takayama, I., Fujii, H., Yamazaki, T.: Nippon Steel Technical Report. 85 (2002) 11-21.
Google Scholar
[7]
L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, E. Gordo, Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders, J. Mech. Behav. Biomed. Mater. 145 (2012) 33-45.
DOI: 10.1016/j.jmbbm.2012.05.019
Google Scholar
[8]
F.H. Froes, M.A. Iman, Cost Affordable Developments in Titanium Technology and Applications, Affordable Titanium III, Trans Tech Publications, Zurich, (2010).
Google Scholar
[9]
M. Niinomi, Recent metallic materials for biomedical applications, Metall Mater Trans A. 33(2002) 477–486.
DOI: 10.1007/s11661-002-0109-2
Google Scholar
[10]
C.A. Lavender, V.S. Moxson, V.A. Duz, Cost-Effective Production of Powder Metallurgy Titanium Auto Components for High-Volume Commercial Applications, 2010, http: /www. pnl. gov/main/publications/external/technical_reports/PNNL-19932. pdf.
DOI: 10.2172/1009762
Google Scholar
[11]
F.H. Froes, Powder Metallurgy of Titanium Alloys, Advances in Powder Metallurgy, Woodhead Publishing Ltd., Cambridge, (2013).
DOI: 10.1533/9780857098900.2.202
Google Scholar
[12]
S.J. Park, A. Arockiasamy, H. El Kadiri, W. Joost, Production of Heavy Vehicle Components from Low-Cost Titanium Powder, Contract No.: DE-FC-26-06NT42755, Mississippi State University, 2014, http: /energy. gov/sites/prod/files/2014/04/f14/4_automotive_metals-titanium. pdf.
Google Scholar
[13]
O. Ivasishin, V. Moxson, Low-cost titanium hydride powder metallurgy, in: Ma Qian and F. H. Froes (Est), Titanium hydride powder metallurgy, Science, Technology and Applications, Elsevier Inc., Library of the Congress, New York, 2015, p.117–148.
DOI: 10.1016/b978-0-12-800054-0.00008-3
Google Scholar
[14]
H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J. M. Zhang, Q. Zhao, Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mat., 436 (2010) 157-163.
DOI: 10.4028/www.scientific.net/kem.436.157
Google Scholar
[15]
J.J. Xu, H.Y. Cheung, S.Q. Shi, Mechanical properties of titanium hydride. J. Alloy Compd. 436 (2007) 82–85.
Google Scholar
[16]
M.B. Novikova, A.M. Ponomarenko, Kinetics of oxidation of Titanium Hydride Powder, Met. Sci. Heat Treat. 50 (2008) 355-358.
DOI: 10.1007/s11041-008-9072-x
Google Scholar
[17]
V. Bhosle, E.G. Baruraj, M. Miranova, K. Salama, Dehydrogenation of nanocrystalline TiH2 and consequent consolidation to form dense Ti, Metall. Mater. Trans A. (2003) 2793-2799.
DOI: 10.1007/s11661-003-0180-3
Google Scholar
[18]
C.I. Pascu, O. Gingu, P. Rotaru, I. Vida-Simiti, A. Harabor, N. Lupu, Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder, J. Therm Anal Calorim. 113 (2013) 849-857.
DOI: 10.1007/s10973-012-2824-2
Google Scholar