[1]
Khalili et al., Heading Prediction in Unmanned Ground Vehicles by Laser Compass, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, (2010).
DOI: 10.1109/mfi.2010.5604488
Google Scholar
[2]
Y. Liu y G. Liu, Track-stair and Vehicle-manipulator Interaction Analysis for Tracked Mobile Manipulators Climbing Stairs, 4th IEEE Conference on Automation Science and Engineering, (2008).
DOI: 10.1109/coase.2008.4626420
Google Scholar
[3]
K. Tadakuma et al., Tracked Vehicle with Circular Cross-Section to Realize Sideways Motion, IEEE International Conference on Robotics and Automation, (2009).
DOI: 10.1109/robot.2009.5152699
Google Scholar
[4]
P. Fiorini, Ground Mobility Systems for Planetary Exploration, Proceedings of the IEEE International Conference on Robotics & Automation San Francisco, CA April, (2000).
Google Scholar
[5]
D. Liu, Q. L. Bo Zhang et al., A Human-Computer Interaction Based Path Planning Method for Mobile Robots in a Complex Environment, IEEE. Autonomy for Mars Rovers: Past, Present, and Future, Computer, vol. 41, nº 12, pp.44-50, (2008).
DOI: 10.1109/anthology.2013.6784715
Google Scholar
[6]
K. Iagnemma y S. Dubowsky et al., Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers, IEEE TRANSACTIONS ON ROBOTICS, (2004).
DOI: 10.1109/tro.2004.829462
Google Scholar
[7]
A. Seeni et al., Robot Mobility Concepts for Extraterrestrial Surface exploration. (2010).
Google Scholar
[8]
O. Garcia et al., Hardware and software architecture of a mobile robot with anthropomorfic arm, de ANDESCON, IEEE, (2010).
Google Scholar
[9]
C.T. Chen, Analog and digital control system design, Saunders College Publishing, (1993).
Google Scholar
[10]
K. Ogata, Ingeniería de Control Moderna, Pearson Prentice Hall, Cuarta edición, (2003).
Google Scholar
[11]
B. S. A. Seeni y G. Hirzinger, Aerospace Technologies Advancements, T. T. Arif, Ed., InTech, January, (2010).
Google Scholar