[1]
E. Calabrò, Determining optimum tilt angles of photovoltaic panels at typical north-tropical latitudes, Journal of Renewable and Sustainable Energy Vol. 1 (2009) 033104.
DOI: 10.1063/1.3148272
Google Scholar
[2]
S. Yilmaz, H.R. Ozcalik, F. Dincer, The analysis on the impact of the roof angle on electricity energy generation of photovoltaic panels in Kahramanmaras, Turkey - A case study for all seasons, Journal of Renewable and Sustainable Energy Vol. 7 (2015).
DOI: 10.1063/1.4919085
Google Scholar
[3]
C. Alexandru, M. Comşiţ, The energy balance of the photovoltaic tracking systems using virtual prototyping platform, IEEE International Conference on the European Electricity Market (2008) 253-258.
DOI: 10.1109/eem.2008.4579038
Google Scholar
[4]
C. Alexandru, C. Pozna, Virtual prototype of a dual-axis tracking system used for photovoltaic panels, IEEE International Symposium on Industrial Electronics (2008) 1598-1603.
DOI: 10.1109/isie.2008.4676923
Google Scholar
[5]
C. Alexandru, The design and optimization of a photovoltaic tracking mechanism, IEEE International Conference on Power Engineering, Energy and Electrical Drives (2009) 436-441.
DOI: 10.1109/powereng.2009.4915246
Google Scholar
[6]
C. Alexandru, A novel open-loop tracking strategy for photovoltaic systems, Scientific World Journal 2013 (2013) 205396(1-12).
DOI: 10.1155/2013/205396
Google Scholar
[7]
S.M. Çinar, F.O. Hocaoğlu, M. Orhun, A remotely accessible solar tracker system design, Journal of Renewable and Sustainable Energy 6 (2014) 033143(1-12).
DOI: 10.1063/1.4885099
Google Scholar
[8]
T. Elakkiy, A. Nandhini, Comparative survey on various solar battery systems and tracking mechanisms, International Journal of Applied Engineering Research 10 (2015) 4141-4154.
Google Scholar
[9]
C. Alexandru, I.N. Tatu, Optimal design of the solar tracker used for a photovoltaic string, Journal of Renewable and Sustainable Energy 5 (2013), 023133 (1-16).
DOI: 10.1063/1.4801452
Google Scholar
[10]
M.A. Ioniţă, C. Alexandru, Optimal design of the mechanical device for a photovoltaic tracking mechanism, Applied Mechanics and Materials 186 (2012) 114-123.
DOI: 10.4028/www.scientific.net/amm.186.114
Google Scholar
[11]
I. Barbu, Virtual prototyping tools applied in mechanical engineering, Mecatronica 3 (2004) 9-12.
Google Scholar
[12]
A. Georgescu, P.A. Simionescu, I. Tălpăşanu, Design and prototyping of a cost-effective sun tracking system for photovoltaic panels, ASME International Mechanical Engineering Congress and Exposition 6B (2015) V06BT07A035(1-5).
DOI: 10.1115/imece2014-37682
Google Scholar
[13]
K. Maharaja, R.J. Xavier, L.J. Amla, P.P. Balaji, Intensity based dual axis solar tracking system, International Journal of Applied Engineering Research 10 (2015) 19457-19465.
Google Scholar
[14]
S.A. Sharaf Eldin, M.S. Abd-Elhady, H.A. Kandil, Feasibility of solar tracking systems for PV panels in hot and cold regions, Renewable Energy 85 (2016) 228-233.
DOI: 10.1016/j.renene.2015.06.051
Google Scholar
[15]
I. Barbu, Phenomena occurring in achieving integrated circuit boards using ultraviolet light, Annals of the Oradea University, Fascicle of Management and Technological Engineering XIII (2014) 303-306.
DOI: 10.15660/auofmte.2014-1.2954
Google Scholar