Operative Temperature Predicting of a Room in Summer: An Approach for Validating of Empirical Calculation Models

Article Preview

Abstract:

Temperature stability of a room is of a high relevance to achieve an optimal level of built environment. Standardized calculation models of temperature stability are determined by international standard ISO 13792 based on recently developed empirical models whose approximations can finally be applied. It basically describes two models, however both demonstrate approaches that may not have the best conformity when confronted with the reality. Thus the research objective is to point out an applicability of given calculating models. The paper presents a validation proposal with aim to find an applicable correlation related to current methodology. Finally as result of this study, proposed approximations could demonstrate better consequence to the reality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

519-526

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Halahyja, Nové tepelnotechnické problémy pozemných stavieb (New thermal problems of civil engineering), first ed., Slovak Academy of Sciences, Bratislava, 1967 (in Slovak).

Google Scholar

[2] J. Řehánek, Tepelná akumulace budov (Heat accumulation of buildings), first ed., ČKAIT (CZECH CHAMBER certified engineers and technicians active in construction), Praha, 2002. (in Czech).

Google Scholar

[3] Katunský, D., & Lopušniak, M. Impact of shading structure on energy demand and on risk of summer overheating in a low energy building. Energy Procedia, 14, 2012, p.1311–1316.

DOI: 10.1016/j.egypro.2011.12.1094

Google Scholar

[4] Anna Mavrogianni, Paul Wilkinson, Michael Davies, Phillip Biddulph, Eleni Oikonomou, Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings, Building and Environment, Volume 55, September 2012, Pages 117-130.

DOI: 10.1016/j.buildenv.2011.12.003

Google Scholar

[5] Ozoliņš, A., Jakovičs, A. & Gendelis, S. Impact of Different Building Materials on Summer Comfort in Low-Energy Buildings. Latvian Journal of Physics and Technical Sciences, 52(3), 2015, pp.44-57.

DOI: 10.1515/lpts-2015-0017

Google Scholar

[6] ČSN 730540-4 Tepelná ochrana budov - Část 4: Výpočtové metody (Thermal protection of buildings – part 4: Calulation methods), Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha, 2005. (in Czech).

Google Scholar

[7] ISO 13792: 2012 Thermal performance of buildings - Calculation of internal temperatures of a room in summer without mechanical cooling - Simplified methods, Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha, (2012).

DOI: 10.3403/30202120

Google Scholar

[8] M. G. Davies, Building Heat Transfer, John Wiley and Sons Ltd, Chichester, (2004).

Google Scholar

[9] ISO 13786: 2007 Thermal performance of building components - Dynamic thermal characteristics - Calculation methods, Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha, (2008).

Google Scholar

[10] H. Hugo, Buillding Phisics, Ernst & Sohn Verlag für Architektur und techniche Wissenschaften GmbH und Co. KG, Berlin, (2007).

Google Scholar

[11] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, London, (1959).

Google Scholar

[12] ISO 13791 Thermal performance of buildings - Calculation of internal temperatures of a room in summer without mechanical cooling - General criteria and validation procedures, Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha, (2012).

DOI: 10.3403/30114649

Google Scholar