Simulation of Summer Thermal Stability and Comparison with Measurement

Article Preview

Abstract:

Thermal stability of the indoor environment in summer period is influenced by the local characteristics of the building site, building geometry, orientation of glazing, heat storage capacity of structures, method and intensity of ventilation, but also the size and characteristics of transparent surfaces and associated heat gains from sunlight. The intensity of solar radiation is a very important parameter that affects the temperature in the room. As a boundary condition in computer simulations is used “Reference climatic year”, but the values are more or less different from the actual measured data. This article presents a comparison of the dynamic calculation of the temperature in the room with the real measured values. In addition, the calculation is modified by substitution of actually measured climate data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

536-543

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ČSN 73 0540-2, Thermal protection of buildings - Part 2: Requirements. Prag: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, (2011).

Google Scholar

[2] ČSN EN ISO 13 791, Thermal performance of buildings - Calculation of internal temperatures of a room in summer without mechanical cooling - General criteria and validation procedures. Prag: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, (2012).

DOI: 10.3403/30114649

Google Scholar

[3] ČSN EN ISO 13 792, Thermal performance of buildings - Calculation of internal temperatures of a room in summer without mechanical cooling - Simplified methods. Prag: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, (2012).

DOI: 10.3403/30202120

Google Scholar

[4] ČSN 73 0540-3, Thermal protection of buildings - Part 3: Design value quantities. Prag: Český normalizační institut, (2005).

Google Scholar

[5] SIMULACE 2010, Svoboda Software, Kcad, (2010).

Google Scholar

[6] TRNSYS 16, Transient System Simulation Tool, Solar Energy Laboratory, University of Wisconsin, Madison, USA, (2006).

Google Scholar

[7] ČSN EN ISO 15927-4, Hygrotermal performance of buildings - Calculation and presentation of climatic data - Part 4: Hourly data for assesing the annual energy use for heating and cooling (ISO 15927-4: 2005). Prag: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, (2011).

DOI: 10.3403/30114395

Google Scholar

[8] ČSN 73 0540-4, Thermal protection of buildings - Part 4: Calculation methods. Prag: Český normalizační institut, (2005).

Google Scholar

[9] PEREZ, R., R. SEALS, P. INEICHEN, R. STEWART, D. MENICUCCI. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy. Vol. 39, No. 3. 1987: pp.221-232.

DOI: 10.1016/s0038-092x(87)80031-2

Google Scholar

[10] LOUTZENHISER, P.G., H. MANZ, C. FELSMANN, P.A. STRACHAN, T. FRANK a G.M. MAXWELL. Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Solar Energy. 2007, (81): pp.254-267.

DOI: 10.1016/j.solener.2006.03.009

Google Scholar

[11] LANINI, F. Division of Global Radiation into Direct Radiation and Diffuse Radiation. Bern, CH, 2010. Master's Thesis. University of Bern.

Google Scholar

[12] REINDL, D.T., W.A. BACKMAN a J.A. DUFFIE. Diffuse Fraction Correlations. Solar Energy. 1990, (Vol. 45, No. 1. ): pp.1-7.

DOI: 10.1016/0038-092x(90)90060-p

Google Scholar

[13] HELBIG, N. Application of the Radiosity Approach to the Radiation Balance in Complex Terrain. Zürich, CH, 2009. Dissertation. Universität Zürich.

Google Scholar