[1]
Zecca, S. Micerra, M. C Carrozza & P. Dario. Arts Lab, Scuola Superior Sant' Anna, Pontedera, Control of multifunctional prosthetic hands by processing the electromyographic signals, Crit Rev Biomed Eng. (2002) 459-85.
DOI: 10.1615/critrevbiomedeng.v30.i456.80
Google Scholar
[2]
R. N. Scott and P. A. Parker, Myoelectric prostheses: State of the art. J. Med. Eng. Technol., vol. 12, (1988) 143-151.
Google Scholar
[3]
D. Dorcas and R. N. Scott, A three state myoelectric control, Med. Biol. Eng., vol. 4. (1966) 367-372.
Google Scholar
[4]
P. A. Parker and R. N. Scott. Myoelectric control of prosthesis, CRC Crit. Rev. Biomed. Eng., vol. 13, issue 4, (1986) 283-310.
Google Scholar
[5]
Kyberd, P.J. Holland, O.E. ; Chappell, P.H. ; Smith, S. ; Tregidgo, R. ; Bagwell, P.J. ; Snaith, M., MARCUS: a two degree of freedom hand prosthesis with hierarchical grip control, IEEE Transactions on Rehabilitation Engineering, Volume: 3 , Issue: 1, (1995).
DOI: 10.1109/86.372895
Google Scholar
[6]
Laura A. Miller, CP, Robert D. Lipschutz, Kathy A. Stubblefield, Blair A. Lock, He Huang, T. Walley Williams III, Richard F. Weir, and Todd A. Kuiken, Control of a Six Degree-of-Freedom Prosthetic Arm after Targeted Muscle Reinnervation Surgery, Arch Phys Med Rehabil. (2008).
DOI: 10.1016/j.apmr.2008.05.016
Google Scholar
[7]
Nielsen, J.L.G. Holmgaard, S. ; Ning Jiang ; Englehart, K.B. ; Farina, D. ; Parker, P.A., Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training, IEEE Transactions on Biomedical Engineering, Volume: 58 , Issue: 3, (2010).
DOI: 10.1109/tbme.2010.2068298
Google Scholar
[8]
Micera, S. ; ARTS Lab., Scuola Superiore Sant'Anna, Pisa, Italy ; Carpaneto, J. ; Raspopovic, S., Control of Hand Prostheses Using Peripheral Information, IEEE Reviews in Biomedical Engineering, Volume: 3, ( 2010) 48-68.
DOI: 10.1109/rbme.2010.2085429
Google Scholar
[9]
Erik Scheme, MSc, PEng; Kevin Englehart, Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use, Journal of Rehabilitation Research and Development (JRRD), Volume: 48, (2011).
DOI: 10.1682/jrrd.2010.09.0177
Google Scholar
[10]
Fougner, A. Stavdahl, O. Kyberd, P.J.; Losier, Y.G.; Parker, P.A., Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Control—A Review, IEEE Transactions on Neural Systems and Rehabilitation Engineering (2012) 663–667.
DOI: 10.1109/tnsre.2012.2196711
Google Scholar
[11]
Englehart K, Hudgins B., A robust real-time control scheme for multifunction myoelectric control, IEEE Trans Biomed Eng. (2003) 848–854.
DOI: 10.1109/tbme.2003.813539
Google Scholar
[12]
Jothi Lakshmi D, Illakiya G and Rajkamal R, A Novel Approach and Design of Embedded Controlled Prosthetic Upper Limb to Assist the Above Elbow Amputees, Advanced Materials Research Vols. 403-408, (2012) 2039–(2045).
DOI: 10.4028/www.scientific.net/amr.403-408.2039
Google Scholar
[13]
Mahdi Khezri and Mehran Jahed, Real-time intelligent pattern recognition algorithm for surface EMG signals, Biomed Eng Online, v. 6 (2007).
DOI: 10.1186/1475-925x-6-45
Google Scholar