Nanofabrication of Polymer Biosensor Structures for Biomedical Applications

Article Preview

Abstract:

This paper presents the nanofabrication of polymer biosensor structures for biomedical applications. The polymer biosensor structures were achieved using hot embossing technology. The pressure effects on the replication of patterns during the hot embossing of the polymer biosensor structures were investigated. The fabricated polymer biosensor structures with pillar arrays were applied to immunoassay biochips. The pillar shapes of the polymer biosensor structures provided large surface areas and improved the antibody-antigen interaction of the immunoassay biochips.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-159

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Viganò, R. Suriano, M. Levi, S. Turri, M. Chiari, F. Damin, Glass silanization with blocked-isocyanate for the fabrication of DNA microarrays, Surf. Sci. 601 (2007) 1365-1370.

DOI: 10.1016/j.susc.2006.12.089

Google Scholar

[2] K. Pratsch, R. Wellhausen1, H. Seitz, Advances in the quantification of protein microarrays, Curr. Opin. Chem. Biol. 18 (2014) 16-20.

Google Scholar

[3] H. Lim, D. Kim, W. Lee, Y. Park, K. Lee, Production of protein microarrays for cell culture using electrostatic deposition, Sens. Actuators A 139 (2007) 124-130.

DOI: 10.1016/j.sna.2007.04.066

Google Scholar

[4] G. D. Simoni, G. Signore, M. Agostini, F. Beltram, V. Piazza, A surface-acoustic-wave-based cantilever bio-sensor, Biosens. Bioelectron. 68 (2015) 570-576.

DOI: 10.1016/j.bios.2014.12.058

Google Scholar

[5] T. Mappes, S. Achenbach, J. Mohr, X-ray lithography for devices with high aspect ratio polymer submicron structures, Microelectron. Eng. 84 (2007) 1235-1239.

DOI: 10.1016/j.mee.2007.01.154

Google Scholar

[6] V. Giorgis, P. Zilio, M. Massari, G. Ruffato, G. Zacco, F. Romanato, Fabrication of multiple large arrays of split ring resonators by X-ray lithographic process for sensing purposes, Microelectron. Eng. 127 (2014) 68-71.

DOI: 10.1016/j.mee.2014.04.030

Google Scholar

[7] C. Martin, G. Rius, A. Llobera, A. Voigt, G. Gruetzner, F. Pérez-Murano, Electron beam lithography at 10 keV using an epoxy based high resolution negative resist, Microelectron. Eng. 84 (2007) 1096-1099.

DOI: 10.1016/j.mee.2007.01.035

Google Scholar

[8] Y. -L. Lai, Y. -K. Lai, C. -Y. Chang, E. Y. Chang, A novel fabrication technique of T-shaped gates using an EGMEA and PMIPK multi-layer resist system and a single-step electron-beam exposure, Microelectron. Eng. 41/42 (1998) 555-558.

DOI: 10.1016/s0167-9317(98)00130-0

Google Scholar

[9] Y. Chen, Nanofabrication by electron beam lithography and its applications: A review, Microelectron. Eng. 135 (2015) 57-72.

Google Scholar

[10] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Nanoimprint lithography, J. Vac. Sci. Technol. B 14 (1996) 4129-4133.

Google Scholar

[11] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Imprint lithography with 25-nanometer resolution, Science 272 (1996) 85-87.

DOI: 10.1126/science.272.5258.85

Google Scholar

[12] Y. -L. Lai, C. -C. Chiu, Fabrication of photonic crystals for infrared applications, Colloids and Surfaces A: Physicochem. Eng. Aspects 313–314 (2008) 497-499.

DOI: 10.1016/j.colsurfa.2007.05.075

Google Scholar

[13] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett. 67 (1995) 3114-3116.

DOI: 10.1063/1.114851

Google Scholar

[14] H. -C. Scheer, H. Schulz, A contribution to the flow behaviour of thin polymer films during hot embossing lithography, Microelectron. Eng. 56 (2001) 311-332.

DOI: 10.1016/s0167-9317(01)00569-x

Google Scholar