Effect of Grain Size on Vickers Microhardness and Fracture Toughness in Calcium Phosphate Bioceramics

Article Preview

Abstract:

Grain size dependences of Vickers microhardness and indentation fracture toughness in fully dense hydroxyapatite bioceramics without additives were studied. The nanostructure and highly pure Hydroxyapatite powders produced by wet chemical precipitation method were used as starting material. After uniaxial and cold isostatic pressing, the green HA samples sintered at temperatures ranging from 1000 °C to 1300 °C with one minute holding time. Dense compacts with grain sizes in the nanometer to micrometer range were processed. The average grain size of HA compact sintered at 1000 °C was around 500 nm. Grain size increased to 3 µm when the compacts were sintered at a higher temperature. The average microhardness value of sintered HA decreased with an increased in grain size. Indentation fracture toughness for HA compacts of 700 nm grain size was 1.41±0.4 MPa.m1/2 which is similar to fracture toughness of human cortical bone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-243

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.L. Hench: Am. Ceram. Soc. Bull. Vol. 84 (2005), pp.18-21.

Google Scholar

[2] K. J. Koester, J.W. Ager and R.O. Ritchie: Nat. Mat. Vol. 7 (2008), pp.672-677.

Google Scholar

[3] G. Muralithran and S. Ramesh: Ceram. Int. Vol. 26 (2000), pp.221-230.

Google Scholar

[4] N. Thangamani, K. Chinnakali and F.D. Gnanam: Ceram. Int. Vol. 28 (2002), pp.355-362.

Google Scholar

[5] M. Mazaheri, M. Haghighatzadeh, A.M. Zahedi and S.K. Sadrnezhaad: J. Alloys Compd. Vol. 471 (2009), pp.180-184.

Google Scholar

[6] A. Banerjee, A. Bandyopadhyay and S. Bose: Mat. Sci. Eng. C Vol. 27 (2007), pp.729-735.

Google Scholar

[7] S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng and I. Sopyan: J. Mater. Proc. Technol. Vol. 206 (2008), p.221–30.

Google Scholar

[8] Dj. Veljovic, B. Jokic, R. Petrovic and E. Palcevskis: Ceram. Int. Vol. 35 (2009), p.1407–13.

Google Scholar

[9] C. Suryanarayana: J. Minerals Metals Mat. Soc. Vol. 54 (2002), pp.24-27.

Google Scholar

[10] A.J. Ruys, M. Wei, C.C. Sorrell, M.R. Dickson, A. Brandwood, B. Milthorpe: Biomaterials. Vol. 16 (1995) p.409–415.

DOI: 10.1016/0142-9612(95)98859-c

Google Scholar

[11] J. Norton, K.R. Malik, J.A. Darr and I. Rehman: Adv. Appl. Ceram. Vol. 105 (2006), pp.113-139.

Google Scholar

[12] C.R. Kothapalli, M. Wei, R.Z. Legeros and M.T. Shaw: J. Mat. Sci. Mat Med. Vol. 16 (2005), pp.441-446.

Google Scholar

[13] S. Raynaud, E. Champion and D. Bernache-Assollant: Biomaterials Vol. 23 (2002), p.1073–1080.

DOI: 10.1016/s0142-9612(01)00219-8

Google Scholar

[14] C. Kothapalli, M. Wei, A. Vasiliev, M.T. Shaw: Acta Mater Vol. 52 (2004), p.5655–63.

Google Scholar

[15] D. Kinderlehrer: Nature Vol. 446 (2007), pp.995-996.

Google Scholar

[16] T. Zhu and J. Li: Prog. Mat. Sci. Vol. 55 (2010), p.710–757.

Google Scholar

[17] ASTM E112-96(2004)e2: ASTM International, West Conshohocken, PA, (2004).

Google Scholar

[18] K. Niihara: Bull. Ceram. Soc. Japan. Vol. 20 (1985), p.12–18.

Google Scholar

[19] D. Cullity and S.R. Stock: Elements of X-Ray Diffraction (Prentice Hall Inc. (2001) pp.167-170).

Google Scholar