Experimental and Theoretical Investigation over the Wood Permeability to Air as a Function of Pyrolysis Temperature

Article Preview

Abstract:

The paper deals with the wood permeability to gases and its changes with the temperature as it is important phenomena to be taken into account in order to determine the rate of release of the pyrolytic gases from a wood particle in the pyrolysis process. Both theoretical and experimental approaches are presented. The measurements were conducted on an original test stand designed and built solely for this purpose. The results show an interesting dependence of the permeability on the pyrolysis temperature of the wood. The permeability generally increases with the temperature (up to over ten times of initial value) but for the range of temperatures from 50°C to 150°C it reaches values lower than for room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

295-305

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Pattanotai, H. Watanabe, K. Okazaki Gasification characteristic of large wood chars with anisotropic structure, Fuel, 117 (2014) 331-339.

DOI: 10.1016/j.fuel.2013.09.030

Google Scholar

[2] S. Kruczek Boilers. Design and calculations, Wrocław University of Technology, Wrocław, (2001).

Google Scholar

[3] T. Tanaka, Y. Kawai, M. Sadanari, S. Shida, T. Tsuchimoto Air permeability of Sugi (Cryptomeria Japonica) wood in the three directions, Maderas. Ciencia y tecnología 17(1) (2015) 17 - 28.

DOI: 10.4067/s0718-221x2015005000002

Google Scholar

[4] W. Jinman, D. Chengyue, L. Yixing. Wood permeability, Journal of Northeast Forestry University, 2(1) (1991) 91-97.

DOI: 10.1007/bf02874797

Google Scholar

[5] A. L. Redman, H. Bailleres, I. Turner, P. Perre, Mass transfer properties (permeability and mass diffusivity) of four australian hardwood species" Redman et al. "Mass transfer in hardwood, BioResources 7(3) (2012) 3410-3424.

DOI: 10.15376/biores.7.3.3410-3424

Google Scholar

[6] B. Eilmann, P. Weber, A. Rigling, D. Eckstein Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland, Dendrochronologia, 23 (2006) 121-132.

DOI: 10.1016/j.dendro.2005.10.002

Google Scholar

[7] P. Baltrėnas, E. Baltrėnaitė, E. Spudulis Biochar from Pine and Birch Morphology and Pore Structure Change by Treatment in Biofilter, Water, Air & Soil Pollution 226(69) (2015) 1-14.

DOI: 10.1007/s11270-015-2295-8

Google Scholar

[8] V.P. Ikonen, H. Peltola, L. Wilhelmsson, A. Kilpeläinen, H. Väisänen, T. Nuutinen, S. Kellomäki Modeling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L. ) and Norway spruce (Picea abies (L. ) Karst. ) as affected by silvicultural management, Forest Ecology and Management, 256(6) (2008).

DOI: 10.1016/j.foreco.2008.06.039

Google Scholar

[9] X. Zhou, J. Ma, Z. Ji, X. Zhang, S. Ramaswamy, F. Xu, R.C. Sun Dilute acid pretreatment differentially affects the compositional and architectural features of Pinus bungeana Zucc. compression and opposite wood tracheid walls, Industrial Crops and Products, 62 (2014).

DOI: 10.1016/j.indcrop.2014.08.035

Google Scholar

[10] S. Kellomäki Forest resources and sustainable management, Fapet Oy, Helsinki, Finland, (1998).

Google Scholar

[11] J. Gullichsen, C.J. Fogelholm Chemical pulping, Fapet Oy, Helsinki, Finland, (1999).

Google Scholar

[12] H. Mäkinen, J. Hynynen Predicting wood and tracheid properties of Scots pine, Forest Ecology and Management, 279(1) (2012) 11-20.

DOI: 10.1016/j.foreco.2012.05.024

Google Scholar

[13] Y. I. Park, H. Spiecker Variations in the tree-ring structure of Norway spruce (Picea abies) under contrasting climates, Dendrochronologia, 23(2) (2015) 93-104.

DOI: 10.1016/j.dendro.2005.09.002

Google Scholar

[14] J.W. Seo, M. Smiljanić, M. Wilmking Optimizing cell-anatomical chronologies of Scots pine by stepwise increasing the number of radial tracheid rows included—Case study based on three Scandinavian sites, Dendrochronologia, 32(3) (2014) 205-209.

DOI: 10.1016/j.dendro.2014.02.002

Google Scholar

[15] M. Plötze, P. Niemz Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry, European Journal of Wood and Wood products, 69 (2011) 649-657.

DOI: 10.1007/s00107-010-0504-0

Google Scholar

[16] C. E. Brewer, V. J. Chuang, C. A. Masiello, H. Gonnermann, X. Gao, B. Dugan, L.E. Driver, P. Panzacchi, K. Zygourakis, C.A. Davies New approaches to measuring biochar density and porosity, Biomass & Bioenergy, 66 (2014) 176-185.

DOI: 10.1016/j.biombioe.2014.03.059

Google Scholar

[17] M. Somerville, S. Jahanshahi The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood, Renewable Energy, 80 (2015) 471-478.

DOI: 10.1016/j.renene.2015.02.013

Google Scholar

[18] D. Kardaś, J. Kluska, S. Polesek-Karczewska Introduction to the gasification of biomass,. Institute of Fluid Flow Machinery, Gdańsk , (2014).

Google Scholar

[19] R.A. Brown, A.K. Kercher, T.H. Nguyen, D.C. Nagle, W.P. Ball Production and characterization of synthetic wood char for use as surrogates for natural sorbents, Organic Geochemistry, 37(3) (2006) 321-333.

DOI: 10.1016/j.orggeochem.2005.10.008

Google Scholar

[20] H.E. Desch, J.M. Dinwoodie Timber: Structure, Properties, Conversion and Use, Palgrave Macmillan; 7th edition, (1996).

Google Scholar

[21] J.D. Conolly, R.A. Hill Dictionary of Terpenoids, Vol. 1, Chapman & Hall, (1991).

Google Scholar