Binding Affinity Analysis of Aptamer Targeted to Live Bacterial Cells

Article Preview

Abstract:

In this paper, the binding assay of potential aptamer candidates targeted to L. acidophilus was monitored by flow cytometry. Furthermore, the equilibrium dissociation constant of the aptamer-bacterial cell interaction were estimated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-112

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. D. Ellington and J. W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature. 346 (1990) 818-822.

DOI: 10.1038/346818a0

Google Scholar

[2] L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas and J. J. Toole, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature. 355 (1992) 564-566.

DOI: 10.1038/355564a0

Google Scholar

[3] M. A. Keniry and E. A. Owen, Insight into the molecular recognition of spermine by DNA quadruplexes from an NMR study of the association of spermine with the thrombin-binding aptamer, J. Mol. Recognit. 26 (2013) 308-317.

DOI: 10.1002/jmr.2274

Google Scholar

[4] T. Hermann and D. J. Patel, Adaptive recognition by nucleic acid aptamers, Science. 287 (2000) 820-825.

DOI: 10.1126/science.287.5454.820

Google Scholar

[5] N. Duan, S. J. Wu, Y. Yu, X. Y. Ma, Y. Xia, X. J. Chen, Y. K. Huang and Z. P. Wang, A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels, Anal. Chim. Acta. 804 (2013).

DOI: 10.1016/j.aca.2013.09.047

Google Scholar

[6] J. H. Jung, D. S. Cheon, F. Liu, K. B. Lee and T. S. Seo, A graphene oxide based immuno-biosensor for pathogen detection, Angew Chem Int Ed Engl. 49 (2010) 5708-5711.

DOI: 10.1002/anie.201001428

Google Scholar

[7] S. Wu, N. Duan, X. Ma, Y. Xia, H. Wang and Z. Wang, A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy, Anal. Chim. Acta. 782 (2013).

DOI: 10.1016/j.aca.2013.04.025

Google Scholar

[8] Y. X. Wang, Z. Z. Ye, C. Y. Si and Y. B. Ying, Application of Aptamer Based Biosensors for Detection of Pathogenic Microorganisms, Chinese J. Anal. Chem. 40 (2012) 634-642.

DOI: 10.1016/s1872-2040(11)60542-2

Google Scholar

[9] Y. S. Kim, J. Chung, M. Y. Song, J. Jurng and B. C. Kim, Aptamer cocktails: Enhancement of sensing signals compared to single use of aptamers for detection of bacteria, Biosens. and Bioelectron. 54 (2014) 195-198.

DOI: 10.1016/j.bios.2013.11.003

Google Scholar

[10] S. Amaya-Gonzalez, N. De-los-Santos-Alvarez, A. J. Miranda-Ordieres and M. J. Lobo-Castanon, Aptamer-based analysis: a promising alternative for food safety control, Sensors (Basel). 13 (2013) 16292-16311.

DOI: 10.3390/s131216292

Google Scholar

[11] M. Labib, A. S. Zamay, O. S. Kolovskaya, I. T. Reshetneva, G. S. Zamay, R. J. Kibbee, S. A. Sattar, T. N. Zamay and M. V. Berezovski, Aptamer-Based Impedimetric Sensor for Bacterial Typing, Anal. Chem. 84 (2012) 8114-8117.

DOI: 10.1021/ac302217u

Google Scholar

[12] M. Labib, A. S. Zamay, O. S. Kolovskaya, I. T. Reshetneva, G. S. Zamay, R. J. Kibbee, S. A. Sattar, T. N. Zamay and M. V. Berezovski, Aptamer-based viability impedimetric sensor for bacteria, Anal. Chem. 84 (2012) 8966-8969.

DOI: 10.1021/ac302902s

Google Scholar