[1]
M. Guazzato, M. Albakry, S.P. Ringer, M.V. Swain, Strength, fracture toughness and microstructure of a selection of all ceramic materials, Part II. Zirconia-based dental ceramics, Dent Mater. 20 (2004) 449–456.
DOI: 10.1016/j.dental.2003.05.002
Google Scholar
[2]
J. Fischer, B. Stawarczyk, C.H. Hammerle, Flexural strength of veneering ceramics for zirconia, J. Dentistry. 36 (2008) 316–321.
DOI: 10.1016/j.jdent.2008.01.017
Google Scholar
[3]
J.W. Kim, J.H. Kim, M.N. Janal, Y. Zhang, Damage maps of veneered zirconia under simulated mastication, J. Dent. Res. 87 (2008) 1127–1132.
DOI: 10.1177/154405910808701210
Google Scholar
[4]
E.D. Rekow, G. Zhang, V. Thompson, J.W. Kim, P. Coehlo, Y. Zhang, Effects of geometry on fracture initiation and propagation in all-ceramic crowns, J. Biomed. Mater. Res. B Appl. Biomater. 88 (2009) 436–446.
DOI: 10.1002/jbm.b.31133
Google Scholar
[5]
D. Edelhoff, B. Florian, W. Florian, C. Johnen, HIP zirconia fixed partial dentures—clinical results after 3 years of clinical service, Quintessence. Int. 39 (2008) 459–471.
Google Scholar
[6]
J. Tinschert, K.A. Schulze, G. Natt, P. Latzke, N. Heussen, H. Spiekermann, Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results, Int. J. Prosthodont. 21 (2008) 217–222.
DOI: 10.1055/s-2007-970226
Google Scholar
[7]
I. Sailer, A. Feher, F. Filser, L.J. Gauckler, H. Luthy, C.H. Hammerle, Five-year clinical results of zirconia frameworks for posterior fixed partial dentures Int. J. Prosthodont. 20 (2007) 383–388.
Google Scholar
[8]
S. Reich, A. Petschelt, U. Lohbauer, The effect of finish line preparation and layer thickness on the failure load and fractography of ZrO2 copings, J. Prosthet. Dent. 99 (2008) 369–376.
DOI: 10.1016/s0022-3913(08)60085-2
Google Scholar
[9]
N. De Jager, P. Pallav, A.J. Feilzer, The influence of design parameters on the FEA-determined stress distribution in CAD–CAM produced all-ceramic dental crowns, Dent. Mater. 21 (2005) 242–251.
DOI: 10.1016/j.dental.2004.03.013
Google Scholar
[10]
M.N. Aboushelib, C.J. Kleverlaan, A.J. Feilzer, Microtensile bond strength of different components of core veneered all ceramic restorations. Part II: Zirconia veneering ceramics, Dent. Mater. 22 (2006) 857–863.
DOI: 10.1016/j.dental.2005.11.014
Google Scholar
[11]
S.D. Heintze, V. Rousson. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review, Int. J. Prosthodont. 23 (2010) 493–502.
Google Scholar
[12]
E.D. Rekow, M. Harsono, M. Janal, V.P. Thompson, G. Zhang. Factorial analysis of variables influencing stress in all-ceramic crowns, Dent. Mater. 22 (2006) 125–132.
DOI: 10.1016/j.dental.2005.04.010
Google Scholar
[13]
B. Dejak, A. Młotkowski, C. Lango. Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials, Dent. Mater. 28(4) (2012) 433-441.
DOI: 10.1016/j.dental.2011.11.019
Google Scholar
[14]
A. Imanishi, T. Nakamura, T. Ohyama, T. Nakamura 3-D Finite element analysis of all-ceramic posterior crowns, J. Oral Rehabil. 30 (2003) 818–822.
DOI: 10.1046/j.1365-2842.2003.01123.x
Google Scholar
[15]
M. Rosentritt, D. Steiger, M. Behr, G. Handel, C. Kolbeck, Influence of substructure design and spacer settings on the in vitro performance of molar zirconia crowns, J. Dent. 37(12) (2009) 978-983.
DOI: 10.1016/j.jdent.2009.08.003
Google Scholar
[16]
P. Oyar, M. Ulusoy, G. Eskitaşçıoğlu, Finite element analysis of stress distribution in ceramic crowns fabricated with different tooth preparation designs, J. Prosthet. Dent. 112(4) (2014) 871-877.
DOI: 10.1016/j.prosdent.2013.12.019
Google Scholar
[17]
K.J. Anusavice, O.M. Jadaan, J.F. Esquivel-Upshaw, Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation, Dent. Mater. 29(11) (2013).
DOI: 10.1016/j.dental.2013.08.206
Google Scholar