Fabrication of Ascorbic Acid Biosensor Based on Coupling Polyethylene Glycol Modified Silk Fibroin Membrane onto Glassy Carbon Electrode

Article Preview

Abstract:

Nowadays biosensors have been extensively used in a wide variety of applications especially in clinical works and food industry. In this work, a specific ascorbic acid (AA) biosensor was developed by immobilizing ascorbate oxidase (ASOD) on a polyethylene glycol (PEG) modified silk fibroin (SF) membrane then coupling to the glassy carbon electrode (GCE). The SF-PEG-ASOD membrane provided the highest enzyme activity in phosphate buffer at pH 5. As being the electrode, the SF-PEG-ASOD modified GCE displayed the highest response when it is operated under the condition of 0.40 mg/L of ASOD in phosphate buffer at pH 5. This biosensor provided both good linearity (r2 = 0.999 in the range of 1.0-10.0 mM) and sensitivity with short response time (26s). It also exhibited good anti-interference ability with the storage time of 5 days without changing its initial response.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-70

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.N. Velasco-Garcia, T. Mottram, Biosensor technology addressing agricultural problems, Biosyst. Eng. 84 (2003) 1-12.

DOI: 10.1016/s1537-5110(02)00236-2

Google Scholar

[2] K. Guclu, K. Sozgen, E. Tutem, M. Ozyurek, R. Apak, Spectrophotometric determination of ascorbic acid using copper(II)-neocuproine reagent in beverages and pharmaceuticals, Talanta, 65 (2005) 1226-1232.

DOI: 10.1016/j.talanta.2004.08.048

Google Scholar

[3] J. Lykkesfeldt, Determination of Ascorbic Acid and Dehydroascorbic Acid in Biological Samples by High-Performance Liquid Chromatography Using Subtraction Methods: Reliable Reduction with Tris[2-carboxyethyl]phosphine Hydrochloride, Anal. Biochem. 282 (2000).

DOI: 10.1006/abio.2000.4592

Google Scholar

[4] C.M. Renato, M.A. Augelli, L.L. Claudimir, L. Angnes, Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium, Anal. Chim. Acta. 404 (2000).

DOI: 10.1016/s0003-2670(99)00674-1

Google Scholar

[5] P. Moonsri, S. Watanesk, R. Watanesk, H. Niamsup, Q. Cheng, R.L. Deming, Application of the PEGDE Modified Silk Fibroin Membrane to an Amperometric Glucose Biosensor, Adv Mat Res. 55 (2008) 265-268.

DOI: 10.4028/www.scientific.net/amr.55-57.265

Google Scholar

[6] M. Liu, Y. Wen, D. Li, R. Yue, J. Xu, H. He, A stable sandwich-type amperometric biosensor based on poly (3, 4-ethylenedioxythiophene)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid, Sensor Actuator B. 59 (2011).

DOI: 10.1016/j.snb.2011.07.005

Google Scholar

[7] Y. Liu, X. Zhang, H. Liu, T. Yu, J. Deng, Immobilization of glucose oxidase onto the blend membrane of poly( vinyl alcohol) and regenerated silk fibroin: morphology and application to glucose biosensor, J. Biotech. 46 (1996) 131-138.

DOI: 10.1016/0168-1656(95)00182-4

Google Scholar

[8] H. Yin, Y. Zhou, X. Jing, S. Ai, L. Cui, L. Zhu, Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A, Anal. Chim. Acta. 659 (2010).

DOI: 10.1016/j.aca.2009.11.051

Google Scholar

[9] Y.Q. Zhang, W.D. Shen, R.A. Gu, J. Zhu, R.Y. Xue, Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane, Anal. Chim. Acta. 369 (1998) 123-128.

DOI: 10.1016/s0003-2670(98)00236-0

Google Scholar

[10] P. Ratanasongtham, R. Watanesk, S. Watanesk, Comparison of Porosity Improvement of Silk Fibroin Membrane Using Polyethylene Glycol and Glutaraldehyde for Increasing Oxygen Permeability, Adv. Mat. Res. 750-752 (2013) 1601-1608.

DOI: 10.4028/www.scientific.net/amr.750-752.1601

Google Scholar

[11] X. Zuo, H. Zhang, N. Li, An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine–multi-walled carbon nanotubes modified glassy carbon electrode, Sensor Actuator B. 161 (2012) 1074-1079.

DOI: 10.1016/j.snb.2011.12.013

Google Scholar

[12] Y. Wen, J. Xu, M. Liu, D. Li, L. Lu, R. Yue, H. He, A vitamin C electrochemical biosensor based on one-step immobilization of ascorbate oxidase in the biocompatible conducting poly (3, 4- ethylenedioxythiophene)-lauroylsarcosinate film for agricultural application in crops, J. Electroanal. Chem. 674 (2012).

DOI: 10.1016/j.jelechem.2012.03.021

Google Scholar

[13] M. Moyo, J.O. Okonkwo, N.M. Agyei, An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution, Enzyme Microb. Technol. 56 (2014).

DOI: 10.1016/j.enzmictec.2013.12.014

Google Scholar

[14] E. Akyilmaz, E. Dinkaya, A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of L-ascorbic acid, Talanta. 50 (1999) 87-93.

DOI: 10.1016/s0039-9140(99)00107-1

Google Scholar

[15] X. Wang, H. Watanabe, S. Uchiyama, Amperometric L-ascorbic acid biosensors equipped with enzyme micelle membrane, Talanta. 74 (2008) 1681-1685.

DOI: 10.1016/j.talanta.2007.09.008

Google Scholar