[1]
M.N. Velasco-Garcia, T. Mottram, Biosensor technology addressing agricultural problems, Biosyst. Eng. 84 (2003) 1-12.
DOI: 10.1016/s1537-5110(02)00236-2
Google Scholar
[2]
K. Guclu, K. Sozgen, E. Tutem, M. Ozyurek, R. Apak, Spectrophotometric determination of ascorbic acid using copper(II)-neocuproine reagent in beverages and pharmaceuticals, Talanta, 65 (2005) 1226-1232.
DOI: 10.1016/j.talanta.2004.08.048
Google Scholar
[3]
J. Lykkesfeldt, Determination of Ascorbic Acid and Dehydroascorbic Acid in Biological Samples by High-Performance Liquid Chromatography Using Subtraction Methods: Reliable Reduction with Tris[2-carboxyethyl]phosphine Hydrochloride, Anal. Biochem. 282 (2000).
DOI: 10.1006/abio.2000.4592
Google Scholar
[4]
C.M. Renato, M.A. Augelli, L.L. Claudimir, L. Angnes, Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium, Anal. Chim. Acta. 404 (2000).
DOI: 10.1016/s0003-2670(99)00674-1
Google Scholar
[5]
P. Moonsri, S. Watanesk, R. Watanesk, H. Niamsup, Q. Cheng, R.L. Deming, Application of the PEGDE Modified Silk Fibroin Membrane to an Amperometric Glucose Biosensor, Adv Mat Res. 55 (2008) 265-268.
DOI: 10.4028/www.scientific.net/amr.55-57.265
Google Scholar
[6]
M. Liu, Y. Wen, D. Li, R. Yue, J. Xu, H. He, A stable sandwich-type amperometric biosensor based on poly (3, 4-ethylenedioxythiophene)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid, Sensor Actuator B. 59 (2011).
DOI: 10.1016/j.snb.2011.07.005
Google Scholar
[7]
Y. Liu, X. Zhang, H. Liu, T. Yu, J. Deng, Immobilization of glucose oxidase onto the blend membrane of poly( vinyl alcohol) and regenerated silk fibroin: morphology and application to glucose biosensor, J. Biotech. 46 (1996) 131-138.
DOI: 10.1016/0168-1656(95)00182-4
Google Scholar
[8]
H. Yin, Y. Zhou, X. Jing, S. Ai, L. Cui, L. Zhu, Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A, Anal. Chim. Acta. 659 (2010).
DOI: 10.1016/j.aca.2009.11.051
Google Scholar
[9]
Y.Q. Zhang, W.D. Shen, R.A. Gu, J. Zhu, R.Y. Xue, Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane, Anal. Chim. Acta. 369 (1998) 123-128.
DOI: 10.1016/s0003-2670(98)00236-0
Google Scholar
[10]
P. Ratanasongtham, R. Watanesk, S. Watanesk, Comparison of Porosity Improvement of Silk Fibroin Membrane Using Polyethylene Glycol and Glutaraldehyde for Increasing Oxygen Permeability, Adv. Mat. Res. 750-752 (2013) 1601-1608.
DOI: 10.4028/www.scientific.net/amr.750-752.1601
Google Scholar
[11]
X. Zuo, H. Zhang, N. Li, An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine–multi-walled carbon nanotubes modified glassy carbon electrode, Sensor Actuator B. 161 (2012) 1074-1079.
DOI: 10.1016/j.snb.2011.12.013
Google Scholar
[12]
Y. Wen, J. Xu, M. Liu, D. Li, L. Lu, R. Yue, H. He, A vitamin C electrochemical biosensor based on one-step immobilization of ascorbate oxidase in the biocompatible conducting poly (3, 4- ethylenedioxythiophene)-lauroylsarcosinate film for agricultural application in crops, J. Electroanal. Chem. 674 (2012).
DOI: 10.1016/j.jelechem.2012.03.021
Google Scholar
[13]
M. Moyo, J.O. Okonkwo, N.M. Agyei, An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution, Enzyme Microb. Technol. 56 (2014).
DOI: 10.1016/j.enzmictec.2013.12.014
Google Scholar
[14]
E. Akyilmaz, E. Dinkaya, A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of L-ascorbic acid, Talanta. 50 (1999) 87-93.
DOI: 10.1016/s0039-9140(99)00107-1
Google Scholar
[15]
X. Wang, H. Watanabe, S. Uchiyama, Amperometric L-ascorbic acid biosensors equipped with enzyme micelle membrane, Talanta. 74 (2008) 1681-1685.
DOI: 10.1016/j.talanta.2007.09.008
Google Scholar