The Effects of Bagasse Fiber Loading on the Mechanical Properties of Skim NR–Clay Nanocomposites

Article Preview

Abstract:

Skim natural rubber (NR)–clay nanocomposites were prepared by a coagulation method using the organoclays Cloisite 15A, Cloisite 20A and Cloisite 30B. This work investigated the use of bagasse fiber developed from locally sourced and renewable material as an alternative and/or secondary filler in skim NR–clay nanocomposites. Bagasse fiber loading in the nanocomposites was 0, 5, 10 and 20 phr; the effects of fiber content on cure characteristics and mechanical properties were then determined. The results suggest that the Mooney viscosity tended to increase with increasing fiber content, whereas the cure time at 90% and fatigue testing score decreased as fiber loading increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-49

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ruksakulpiwat, J. Sridee, N. Suppakarn, and W. Sutapun, Improvement of impact property of natural fiber–polypropylene composite by using natural rubber and EPDM rubber, Compos. Part B-Eng. 40 (2009) 619–622.

DOI: 10.1016/j.compositesb.2009.04.006

Google Scholar

[2] S. Kanking, P. Niltui, E. Wimolmala, and N. Sombatsompop, Use of bagasse fiber ash as secondary filler in silica or carbon black filled natural rubber compound, Mater. Design. 41 (2012) 74-82.

DOI: 10.1016/j.matdes.2012.04.042

Google Scholar

[3] P.J. Herrera-Franco and A. Valadez-González, Mechanical properties of continuous natural fibre-reinforced polymer composites, Compos. Part A: Appl. Sci. Manuf. 35 (2004) 339-345.

DOI: 10.1016/j.compositesa.2003.09.012

Google Scholar

[4] N. Sombatsompop, C. Kantala, and E. Wimolmala, wood sawdust fibres as a secondary filler in carbon black filled nr vulcanizates, Polym. Polym. Compos. 14 (2006) 331-347.

DOI: 10.1177/096739110601400401

Google Scholar

[5] S.M. Luz, A. Caldeira-Pires, and P.M.C. Ferrão, Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components, Resour. Conserv. Recy. 54 (2010).

DOI: 10.1016/j.resconrec.2010.03.009

Google Scholar

[6] E.F. Cerqueira, C. A. R. P. Baptista, and D. R. Mulinari, Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites, Procedia Eng. 10 (2011) 2046-(2051).

DOI: 10.1016/j.proeng.2011.04.339

Google Scholar

[7] E.F. Rodrigues, T.F. Maia, and D.R. Mulinari, Tensile strength of polyester resin reinforced sugarcane bagasse fibers modified by estherification, Procedia Eng. 10 (2011) 2348-2352.

DOI: 10.1016/j.proeng.2011.04.387

Google Scholar

[8] Y. Xu, Q. Wu, Y. Lei, and F. Yao, Creep behavior of bagasse fiber reinforced polymer composites, Bioresource Technol. 101 (2010) 3280-3286.

DOI: 10.1016/j.biortech.2009.12.072

Google Scholar

[9] N.A. Abdelwahab, F.M. Helaly, and A.S. Badran, Effect of bagasse on the physicomechanical properties of natural and styrene-butadiene rubbers, J. Elastom. Plast. 40 (2008) 347-363.

DOI: 10.1177/0095244308092421

Google Scholar

[10] J. Bras, M.L. Hassen, C. Bruzesse, E.A. Hassan, and N.A. El- Wakil, Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites, Ind. Crop. Prod. 32 (2010) 627-633.

DOI: 10.1016/j.indcrop.2010.07.018

Google Scholar

[11] T. Nampitch and R. Magaraphan, Effect of coagulating skim NR particles as NR–clay nanocomposite: properties and structure, Rubber Chem. Technol. 84 (2011) 114-135.

DOI: 10.5254/1.3548736

Google Scholar

[12] T. Nampitch and R. Magaraphan, The Removal of Rubber Particles from Skim Rubber Latex by Batch Adsorption Technique Using Organoclay, Adv. Mater. Res. 787 (2013) 122-126.

DOI: 10.4028/www.scientific.net/amr.787.122

Google Scholar

[13] H. Ismail, S. Shuhelmy, and M.R. Edyham, The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites, Eur. Polym. J. 38 (2002) 39-47.

DOI: 10.1016/s0014-3057(01)00113-6

Google Scholar

[14] V.G. Geethamma, R. Joseph, and S. Thomas, Short coir fiber-reinforced natural rubber composites: Effects of fiber length, orientation, and alkali treatment, J. Appl. Polym. Sci. 55 (1995) 583-594.

DOI: 10.1002/app.1995.070550405

Google Scholar

[15] H. Ismail, M.R. Edyham, and B. Wirjosentono, Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent, Polym. Test. 21 (2002) 139-144.

DOI: 10.1016/s0142-9418(01)00060-5

Google Scholar

[16] K. Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, J.K. Kim, and C.K. Das, Effect of epoxidized natural rubber–organoclay nanocomposites on NR/high styrene rubber blends with fillers, Mater. Design. 30 (2009) 4035-4042.

DOI: 10.1016/j.matdes.2009.05.021

Google Scholar

[17] P.T. Hao, H. Ismail and A.S. Hashim. Paper presented at the 3rd Regional IMT-GT Ininetconference., Indonesia, Medan, (2000).

Google Scholar

[18] W. Xie, J.M. Hwu, G.J. Jiang, T.M. Buthelezi and W.P. Pan. A study of the effect of surfactants on the properties of polystyrene-montmorillonite nanocomposites. Polym Eng Sci. 43 (2003) 214-222.

DOI: 10.1002/pen.10018

Google Scholar

[19] H. Zou, W. Xu, Q. Zhang and Q. Fu, Effect of alkylammonium salt on the dispersion and properties of poly(p-phenylene sulfide)/clay nanocomposites via melt intercalation. J Appl Polym Sci. 99 (2006) 1724-31.

DOI: 10.1002/app.22690

Google Scholar