[1]
H.L. Karlsson, P. Cronholm, J. Gustafsson, L. Möller, Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes, Chem. Res. Toxicol. 21 (2008) 1726-1732.
DOI: 10.1021/tx800064j
Google Scholar
[2]
B.S. Sekhon, S.R. Kamboj, Inorganic nanomedicine-Part 2, Nanomed: Nanotechnol. Biol. Med. 6 (2010) 612-618.
Google Scholar
[3]
X.D. Zhang, Toxicologic effects of gold nanoparticles in vivo by different administration routes, Int. J. Nanomedicine, 5 (2010) 771-781.
DOI: 10.2147/ijn.s8428
Google Scholar
[4]
G.S. Mital, M. Tripathi, A review of TiO2 nanoparticles, Chinese Sci. Bull. 56 (2011) 1639-1657.
Google Scholar
[5]
G. Hua, Q. Zhang, Z. Fan, Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis, J. Biol. Chem. 282 (2007) 20553-20560.
DOI: 10.1074/jbc.m703196200
Google Scholar
[6]
C.C. Huang, R.S. Aronstam, D.R. Chen, Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles, Toxicol. In Vitro. 24 (2010) 45-55.
DOI: 10.1016/j.tiv.2009.09.007
Google Scholar
[7]
A. Al Faraj, A.P. Shaik, A.S. Shaik, Effect of surface coating on the biocompatibility and in vivo MRI detection of iron oxide nanoparticles after intrapulmonary administration, Nanotoxicol. 9 (2015) 825-834.
DOI: 10.3109/17435390.2014.980450
Google Scholar
[8]
H. Turkez, M.I. Yousef, E. Sönmez, Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells, J. Appl. Toxicol. 34 (2014) 3373-3379.
DOI: 10.1002/jat.2958
Google Scholar
[9]
P.O. Seglen, Preparation of isolated rat liver cells, Meth. Cell Biol. 13 (1976) 29-83.
Google Scholar
[10]
S. Cimitan, S. Albonetti, L. Forni, Solvothermal synthesis and properties control of doped ZnO nanoparticles, J. Colloid. Interface Sci. 329 (2009) 73-80.
DOI: 10.1016/j.jcis.2008.09.060
Google Scholar
[11]
H. Turkez, F. Geyikoglu, M.I. Yousef, Ameliorative effect of docosahexaenoic acid on 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced histological changes, oxidative stress, DNA damage in rat liver, Toxicol. Ind. Health, 28 (2012) 687-696.
DOI: 10.1177/0748233711420475
Google Scholar
[12]
H. Turkez, E. Aydin, A. Aslan, Xanthoria elegans (Link) (lichen) extract counteracts DNA damage and oxidative stress of mitomycin C in human lymphocytes, Cytotechnol, 64 (2012) 679-686.
DOI: 10.1007/s10616-012-9447-0
Google Scholar
[13]
E. Aydın, H. Turkez, M.S. Keleş, The effect of carvacrol on healthy neurons and N2a cancer cells: some biochemical, anticancerogenicity and genotoxicity studies, Cytotechnol. 66 (2014) 149-157.
DOI: 10.1007/s10616-013-9547-5
Google Scholar
[14]
P. Khanna, C. Ong, B. Huat, Nanotoxicity: An interplay of oxidative stress, inflammation and cell death, Nanomaterial. 5 (2015) 1163-1180.
DOI: 10.3390/nano5031163
Google Scholar
[15]
B. Poljsak, R. Fink, The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution, Oxid. Med. Cell. Longev. 2014 (2014) 671539.
DOI: 10.1155/2014/671539
Google Scholar
[16]
J. Wang, X. Deng, F. Zhang, ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in primary astrocytes, Nanoscale Res. Lett. 13 (2014) 117.
DOI: 10.1186/1556-276x-9-117
Google Scholar
[17]
E. Choe, B. David, Mechanisms of antioxidants in the oxidation of foods, Comprehensive Rev. Food Sci. Food Saf. 8 (2009) 345-358.
Google Scholar
[18]
M. Ahamed, M.J. Akhtar, M.A. Siddiqui, Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells, Toxicol. 283 (2011) 101-108.
DOI: 10.1016/j.tox.2011.02.010
Google Scholar
[19]
H. Fukui, H. Iwahashi, S. Endoh, Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles, J. Occup Health. 57 (2015) 118-125.
DOI: 10.1539/joh.14-0161-oa
Google Scholar
[20]
C. Mihai, L.A. Marghitaa, D. Dezmirean, L. Barnuţiu, Correlation between polyphenolic profile and antioxidant activity of propolis from Transilvania, Scientific Papers Animal Sci. Biotechnol. 44 (2011) 100-103.
Google Scholar
[21]
F. Geyikoglu, H. Turkez, Acute toxicity of boric acid on energy metabolism of the breast muscle in broiler chickens, Biologia 62 (2007) 112-117.
DOI: 10.2478/s11756-007-0018-3
Google Scholar
[22]
F. Geyikoglu, H. Turkez, Boron compounds reduce vanadium tetraoxide genotoxicity in lymphocytes, Environ. Toxicol. Pharmacol. 26 (2008) 342-347.
DOI: 10.1016/j.etap.2008.07.002
Google Scholar
[23]
F. Geyikoglu, H. Turkez, M.S. Keles, The role of fruit juices in the prevention of aluminum sulphate toxicity in vitro, Fresen. Environ. Bull. 14 (2005) 878-883.
Google Scholar
[24]
F. Geyikoglu, H. Turkez, Protective effects of sodium seleniteon genotoxicity to human whole blood in vitro, Brazil. Arch. Biol. Technol. 48 (2005) 905-910.
DOI: 10.1590/s1516-89132005000800006
Google Scholar
[25]
H. Turkez, T. Sisman, Anti-genotoxic effect of hydrated sodium calcium aluminosilicate on genotoxicity to human lymphocytes induced by aflatoxin B1. Toxicol. Ind. Health. 23 (2007) 83-89.
DOI: 10.1177/0748233707076738
Google Scholar
[26]
E.E. Battin, J.L. Brumaghim, Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms, Cell Biochem. Biophys. 55 (2009) 1-23.
DOI: 10.1007/s12013-009-9054-7
Google Scholar
[27]
H. Turkez, E. Dirican, A modulator against mercury chloride-induced genotoxic damage: Dermatocarpon intestiniforme (L. ), Toxicol. Ind. Health. 28 (2012) 58-63.
DOI: 10.1177/0748233711404036
Google Scholar
[28]
E. Ginter, V. Simko, V. Panakova, Antioxidants in health and disease. Bratisl. Lek. Listy. 115 (2014) 603-606.
DOI: 10.4149/bll_2014_116
Google Scholar
[29]
J.M. Yousef, A.M. Mohamed, Prophylactic role of B vitamins against bulk and zinc oxide nano-particles toxicity induced oxidative DNA damage and apoptosis in rat livers, Pak. J. Pharm. Sci. 28 (2015) 175-184.
Google Scholar
[30]
N.M. Al-Rasheed, N.M. Al-Rasheed, N.A. Abdel Baky, Prophylactic role of α-lipoic acid and vitamin E against zinc oxide nanoparticles induced metabolic and immune disorders in rat's liver, Eur. Rev. Med. Pharmacol. Sci. 18 (2014) 1813-1828.
DOI: 10.1055/s-0033-1334923
Google Scholar
[31]
R.Y. Karnakar, C. Saritha, Y. Sridhar, P. Shankaraiah, Naringenin prevents the zinc oxide nanoparticles induced toxicity in swiss albino mice. J. Pharmacol. Clin. Toxicol. 2 (2014) 1021.
Google Scholar
[32]
S. Bakhshiani, M. Fazilati, Vitamin C can reduce toxic effects of nano zinc oxide. Int. Res. J. Biol. Sci. 3 (2014) 65-70.
Google Scholar