[1]
F.J. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett. 3 (1959) 34-36.
DOI: 10.1103/physrevlett.3.34
Google Scholar
[2]
M.A. Sobhan, R.T. Kivaisi, B. Stjerna, C.G. Granqvist, Thermochromism of sputter deposited WxV1− xO2 films, Sol. Energ. Mat. Sol. C. 44 (1996) 451-455.
DOI: 10.1016/s0927-0248(95)00051-8
Google Scholar
[3]
E. Cavanna, Optical switching of Au-doped VO2 sol-gel films, Metter. Res. Bull. 64 (1998) 167-177.
DOI: 10.1016/s0025-5408(99)00017-3
Google Scholar
[4]
W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B.K. Meyer, Tungsten and fluorine co-doping of VO2 films, Thin Solid Films. 402 (2000) 226-231.
DOI: 10.1016/s0040-6090(01)01603-0
Google Scholar
[5]
J. Li, C.Y. Liu, L. jj Mao, The character of W-doped one-dimensional VO2 (M), Sol. St. Chem. 182 (2009) 2835-2839.
Google Scholar
[6]
L. Whittaker, T. L Wu, C.J. Patridge, G. Sambandamurthy, S.J. Banerjee, Distinctive finite size effects on the phase diagram and metal–insulator transitions of tungsten-doped vanadium (iv) oxide, J. Mater. Chem. 21 (2011) 5580-5592.
DOI: 10.1039/c0jm03833d
Google Scholar
[7]
T.J. Hanlon, J.A. Coath, M. A Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method, Thin Solid Films. 436 (2003) 269-272.
DOI: 10.1016/s0040-6090(03)00602-3
Google Scholar
[8]
I.P. Parkin, T.D.J. Manning, Intelligent thermochromic windows, Chem. Educ. 83 (2006) 393.
Google Scholar
[9]
Y. Zhang, W. Li, M. Fan, F. Zhang, X. Liu, Preparation of W- and Mo-doped VO2 (M) by ethanol reduction of peroxovanadium complexes and their phase transition and optical switching properties, J. Alloys Compd. 544 (2012) 30-36.
DOI: 10.1016/j.jallcom.2012.07.093
Google Scholar
[10]
M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater. 13 (2001) 113-116.
DOI: 10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h
Google Scholar
[11]
C.K. Kam, A.K. Cheetham, Thermochromic VO2 nanorods and other vanadium oxides nanostructures, Mater. Res. Bull. 41 (2006) 1015-1021.
DOI: 10.1016/j.materresbull.2006.03.024
Google Scholar
[12]
K. Kotloff, J. Winickoff, B. Ivanoff, J.D. Clemens, D. Swerdlow, P. Sansonetti, G. Adak, M. Levine, Global burden of Shigella infections: implications for vaccine development and implementation of control strategies, B. World Health Organ. 77 (1999).
Google Scholar
[13]
Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Ricka, M. Frenz, A.V. Zvyagin, Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport, Biomed. Opt. Express. 2 (2011) 3321–3333.
DOI: 10.1364/boe.2.003321
Google Scholar
[14]
J.T. Seil, E.N. Taylor, T. J Webster, Reduced activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles, IEEE 35th Annual Northeast Bioengineering Conference, 3-5 April, (2009).
DOI: 10.1109/nebc.2009.4967674
Google Scholar
[15]
G. Colon, B.C. Ward, T.J. Webster J. Biomed, Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2, Mater. Res. 78 (2006) 595–604.
DOI: 10.1002/jbm.a.30789
Google Scholar
[16]
N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles an antimicrobial study, Sci. Technol. Adv. Mater, 9 (2008) 035004.
Google Scholar
[17]
L. Sikong, B. Noophum, K. Kooptarnond, Photodegradation of contaminants and antibacterial activity enhanced By AgCl nanoparticles on N, S, co-doped TiO2 thin films, Dig. J. Nanomater. Bios. 10 (2015) 455-469.
Google Scholar