Silica Rice Husk Supported Ag/ZnO Nanoparticles for an Improved Visible-Light Photocatalytic of Methylene Blue

Article Preview

Abstract:

Nanostructure ZnO and Ag/ZnO were successfully synthesized from rice husk via an eco-friendly sol-gel method. Structural investigations by FT-IR and DR/UV-Vis analyses confirmed the successful inclusion of metal species into the silica framework. XRD and TEM studies evidenced the well-dispersion of silver and zinc onto the silica support. Modification of ZnO with Ag resulted in the maximum photocatalytic activity (90.5 %) of methylene blue, (40 mgL-1) under compact fluorescent lamp irradiation. Minimal agglomeration, high dispersion and narrow band gap energy of Ag/ZnO was suggested to contribute to its excellent photocatalytic activity in comparison to ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.P. Mohabansi, V.B. Patil and N. Yenkie, A comparative study on photodegradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst, J. Chem. 4 (2011) 814-819.

Google Scholar

[2] A.K. Kushwaha, N. Gupta and M.C. Chattopadhyaya, Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota, J. Saudi Chem. Soc. 18 (2014) 200-207.

DOI: 10.1016/j.jscs.2011.06.011

Google Scholar

[3] E.A. El-Sharkawy, A.Y. Soliman and K.M. Al-Amer, Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation, J. Colloid Interf. Sci. 310 (2007) 498-508.

DOI: 10.1016/j.jcis.2007.02.013

Google Scholar

[4] D. Zhang, X. Liu and X. Wang, Growth and photocatalytic activity of ZnO nanosheets stabilized by Ag nanoparticles, J. Alloy Compd. 509 (2011) 4972- 4977.

DOI: 10.1016/j.jallcom.2011.01.145

Google Scholar

[5] K.B. Dermenci, B. Genc, B. Ebin, T. Olmez-Hanci and S. Gurmen, Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method, J. Alloy Compd. 586 (2014) 267-273.

DOI: 10.1016/j.jallcom.2013.10.004

Google Scholar

[6] N. Jain, A. Bhargava and J. Panwar, Enhanced photocatalytic degradation of methylene blue using biologically synthesized 'protein-capped', ZnO nanoparticles, Chem. Eng. J. 243 (2014) 549-555.

DOI: 10.1016/j.cej.2013.11.085

Google Scholar

[7] W. Xie, Y. Li, W. Sun, J. Huang, H. Xie and X. Zhao, Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability, J. Photoch. Photobio. A 216 (2010) 149-155.

DOI: 10.1016/j.jphotochem.2010.06.032

Google Scholar

[8] T.J. Whang, M.T. Hsieh and H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles, Appl. Surf. Sci. 258 (2012) 2796-2801.

DOI: 10.1016/j.apsusc.2011.10.134

Google Scholar

[9] X.H. Guo, J.Q. Ma and H.G. Ge, Preparation, characterization, and photocatalytic performance of pear-shaped ZnO/Ag core-shell submicrospheres, J. Phys. Chem. Solids 74 (2013) 784-788.

DOI: 10.1016/j.jpcs.2013.01.024

Google Scholar

[10] B. Thongrom, P. Amornpitoksuk, S. Suwanboon and J. Baltrusaitis, Photocatalytic degradation of dye by Ag/ZnO prepared by reduction of Tollen's reagent and the ecotoxicity of degraded products, Korean J. Chem. Eng. 31 (2014) 587-592.

DOI: 10.1007/s11814-013-0262-x

Google Scholar

[11] S.C. Motshekga, S.S. Ray, M.S. Onyango and M.N.B. Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay, J. Hazard. Mater. 262 (2013) 439-446.

DOI: 10.1016/j.jhazmat.2013.08.074

Google Scholar

[12] Z. Han, L. Ren, Z. Cui, Z. Chen, H. Pan and J. Chen, Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance, Appl. Catal. B 126 (2012) 298-305.

DOI: 10.1016/j.apcatb.2012.07.002

Google Scholar

[13] S. Anandan, S. Muthukumaran and M. Ashokkumar, Structural and optical properties of Y, Cu-co doped ZnO nanoparticles by sol-gel method, Superlattice Microst. 74 (2014) 247-260.

DOI: 10.1016/j.spmi.2014.07.008

Google Scholar

[14] F. Adam, T. -S. Chew and J. Andas, A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass, J. Sol-gel Sci. Technol. 59 (2011) 580-583.

DOI: 10.1007/s10971-011-2531-7

Google Scholar

[15] W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo and Y. Zhang, Photocatalytic degradation of methylene blue using zinc oxide prepared by codeposition and sol-gel methods, J. Hazard. Mater. 152 (2008) 172-175.

DOI: 10.1016/j.jhazmat.2007.06.082

Google Scholar

[16] F. Adam and J. Andas, Amino benzoic acid modified silica an improved catalyst for the mono-substituted product in the benzylation of toluene with benzyl chloride, J. Colloid Interf. Sci. 311 (2007) 135-143.

DOI: 10.1016/j.jcis.2007.02.083

Google Scholar

[17] H.F. Moafi, M.A. Zanjanchi and A.F. Shojaie, Tungsten-doped ZnO nanocomposite: Synthesis, characterization, and highly active photocatalyst toward dye photodegradation, Mater. Chem. Phys. 139 (2013) 856-864.

DOI: 10.1016/j.matchemphys.2013.02.044

Google Scholar

[18] F. Adam, T.S. Chew and J. Andas, Liquid phase oxidation of acetophenone over rice husk silica vanadium catalyst, Chinese J. Catal. 33 (2012) 518-522.

DOI: 10.1016/s1872-2067(11)60361-6

Google Scholar

[19] M. Selvaraj, P.K. Sinha, K. Lee, I. Ahn, A. Pandurangan and T.G. Lee, Synthesis and characterization of Mn-MCM-41 and Zr-Mn-MCM-41, Micropor. Mesopor. Mater. 78 (2005) 139-149.

DOI: 10.1016/j.micromeso.2004.10.004

Google Scholar

[20] A.M. Ali, A.A. Ismail, R. Najmy and A. Al-Hajry, Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst, J. Photoc. Photobio. A 275 (2014) 37-46.

DOI: 10.1016/j.jphotochem.2013.11.002

Google Scholar

[21] M.A. Hernandez, M. Asomoza, F. Rojas, S. Solis, M.A. Salgado, R. Portillo and D. Jimenez, VOCs physisorption on micro-mesoporous solids: Application for dichloroethylene, trichloroethylene, and tetrachloroethylene on SiO2 and Ag/SiO2, J. Environ. Chem. Eng. 1 (2013).

DOI: 10.1016/j.jece.2013.08.003

Google Scholar

[22] J. Andas, F. Adam, I. Ab. Rahman and Y.H. Taufiq-Yap, Optimization and mechanistic study of the liquid-phase oxidation of naphthalene over biomass-derived iron catalyst, Chem. Eng. J. 252 (2014) 382-392.

DOI: 10.1016/j.cej.2014.04.113

Google Scholar

[23] S. Gu, W. Wang, H. Wang, F. Tan, X. Qiao and J. Chen, Effect of aqueous ammonia addition on the morphology and size of silver particles reduced by ascorbic acid, Powder Technol. 233 (2013) 91-95.

DOI: 10.1016/j.powtec.2012.08.036

Google Scholar

[24] L.P. Ren, W.L. Dai, X.L. Yang, Y. Cao, H. Li and K.N. Fan, Novel highly active Ag-SiO2-Al2O3-ZnO catalyst for the production of anhydrous HCHO from direct dehydrogenation of CH3OH, Appl. Catal. A 273 (2004) 83-88.

DOI: 10.1016/j.apcata.2004.06.015

Google Scholar

[25] G. Liu, Z.H. Huang and F. Kang, Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature, J. Hazard. Mater. 215-216 (2012) 166-172.

DOI: 10.1016/j.jhazmat.2012.02.050

Google Scholar

[26] I.A. Wani, A. Ganguly, J. Ahmed and T. Ahmad, Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies, Mater. Lett. 65 (2011) 520-522.

DOI: 10.1016/j.matlet.2010.11.003

Google Scholar

[27] R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan and A. Stephen, ZnO/Ag nanocomposite: An efficient catalyst for the degradation studies of textile effluents under visible light, Mater. Sci. Eng. C 33 (2013).

DOI: 10.1016/j.msec.2013.01.046

Google Scholar

[28] C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Iv and T. Guo, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182 (2010) 123-129.

DOI: 10.1016/j.jhazmat.2010.05.141

Google Scholar