[1]
N.P. Mohabansi, V.B. Patil and N. Yenkie, A comparative study on photodegradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst, J. Chem. 4 (2011) 814-819.
Google Scholar
[2]
A.K. Kushwaha, N. Gupta and M.C. Chattopadhyaya, Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota, J. Saudi Chem. Soc. 18 (2014) 200-207.
DOI: 10.1016/j.jscs.2011.06.011
Google Scholar
[3]
E.A. El-Sharkawy, A.Y. Soliman and K.M. Al-Amer, Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation, J. Colloid Interf. Sci. 310 (2007) 498-508.
DOI: 10.1016/j.jcis.2007.02.013
Google Scholar
[4]
D. Zhang, X. Liu and X. Wang, Growth and photocatalytic activity of ZnO nanosheets stabilized by Ag nanoparticles, J. Alloy Compd. 509 (2011) 4972- 4977.
DOI: 10.1016/j.jallcom.2011.01.145
Google Scholar
[5]
K.B. Dermenci, B. Genc, B. Ebin, T. Olmez-Hanci and S. Gurmen, Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method, J. Alloy Compd. 586 (2014) 267-273.
DOI: 10.1016/j.jallcom.2013.10.004
Google Scholar
[6]
N. Jain, A. Bhargava and J. Panwar, Enhanced photocatalytic degradation of methylene blue using biologically synthesized 'protein-capped', ZnO nanoparticles, Chem. Eng. J. 243 (2014) 549-555.
DOI: 10.1016/j.cej.2013.11.085
Google Scholar
[7]
W. Xie, Y. Li, W. Sun, J. Huang, H. Xie and X. Zhao, Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability, J. Photoch. Photobio. A 216 (2010) 149-155.
DOI: 10.1016/j.jphotochem.2010.06.032
Google Scholar
[8]
T.J. Whang, M.T. Hsieh and H.H. Chen, Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles, Appl. Surf. Sci. 258 (2012) 2796-2801.
DOI: 10.1016/j.apsusc.2011.10.134
Google Scholar
[9]
X.H. Guo, J.Q. Ma and H.G. Ge, Preparation, characterization, and photocatalytic performance of pear-shaped ZnO/Ag core-shell submicrospheres, J. Phys. Chem. Solids 74 (2013) 784-788.
DOI: 10.1016/j.jpcs.2013.01.024
Google Scholar
[10]
B. Thongrom, P. Amornpitoksuk, S. Suwanboon and J. Baltrusaitis, Photocatalytic degradation of dye by Ag/ZnO prepared by reduction of Tollen's reagent and the ecotoxicity of degraded products, Korean J. Chem. Eng. 31 (2014) 587-592.
DOI: 10.1007/s11814-013-0262-x
Google Scholar
[11]
S.C. Motshekga, S.S. Ray, M.S. Onyango and M.N.B. Momba, Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay, J. Hazard. Mater. 262 (2013) 439-446.
DOI: 10.1016/j.jhazmat.2013.08.074
Google Scholar
[12]
Z. Han, L. Ren, Z. Cui, Z. Chen, H. Pan and J. Chen, Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance, Appl. Catal. B 126 (2012) 298-305.
DOI: 10.1016/j.apcatb.2012.07.002
Google Scholar
[13]
S. Anandan, S. Muthukumaran and M. Ashokkumar, Structural and optical properties of Y, Cu-co doped ZnO nanoparticles by sol-gel method, Superlattice Microst. 74 (2014) 247-260.
DOI: 10.1016/j.spmi.2014.07.008
Google Scholar
[14]
F. Adam, T. -S. Chew and J. Andas, A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass, J. Sol-gel Sci. Technol. 59 (2011) 580-583.
DOI: 10.1007/s10971-011-2531-7
Google Scholar
[15]
W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo and Y. Zhang, Photocatalytic degradation of methylene blue using zinc oxide prepared by codeposition and sol-gel methods, J. Hazard. Mater. 152 (2008) 172-175.
DOI: 10.1016/j.jhazmat.2007.06.082
Google Scholar
[16]
F. Adam and J. Andas, Amino benzoic acid modified silica an improved catalyst for the mono-substituted product in the benzylation of toluene with benzyl chloride, J. Colloid Interf. Sci. 311 (2007) 135-143.
DOI: 10.1016/j.jcis.2007.02.083
Google Scholar
[17]
H.F. Moafi, M.A. Zanjanchi and A.F. Shojaie, Tungsten-doped ZnO nanocomposite: Synthesis, characterization, and highly active photocatalyst toward dye photodegradation, Mater. Chem. Phys. 139 (2013) 856-864.
DOI: 10.1016/j.matchemphys.2013.02.044
Google Scholar
[18]
F. Adam, T.S. Chew and J. Andas, Liquid phase oxidation of acetophenone over rice husk silica vanadium catalyst, Chinese J. Catal. 33 (2012) 518-522.
DOI: 10.1016/s1872-2067(11)60361-6
Google Scholar
[19]
M. Selvaraj, P.K. Sinha, K. Lee, I. Ahn, A. Pandurangan and T.G. Lee, Synthesis and characterization of Mn-MCM-41 and Zr-Mn-MCM-41, Micropor. Mesopor. Mater. 78 (2005) 139-149.
DOI: 10.1016/j.micromeso.2004.10.004
Google Scholar
[20]
A.M. Ali, A.A. Ismail, R. Najmy and A. Al-Hajry, Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst, J. Photoc. Photobio. A 275 (2014) 37-46.
DOI: 10.1016/j.jphotochem.2013.11.002
Google Scholar
[21]
M.A. Hernandez, M. Asomoza, F. Rojas, S. Solis, M.A. Salgado, R. Portillo and D. Jimenez, VOCs physisorption on micro-mesoporous solids: Application for dichloroethylene, trichloroethylene, and tetrachloroethylene on SiO2 and Ag/SiO2, J. Environ. Chem. Eng. 1 (2013).
DOI: 10.1016/j.jece.2013.08.003
Google Scholar
[22]
J. Andas, F. Adam, I. Ab. Rahman and Y.H. Taufiq-Yap, Optimization and mechanistic study of the liquid-phase oxidation of naphthalene over biomass-derived iron catalyst, Chem. Eng. J. 252 (2014) 382-392.
DOI: 10.1016/j.cej.2014.04.113
Google Scholar
[23]
S. Gu, W. Wang, H. Wang, F. Tan, X. Qiao and J. Chen, Effect of aqueous ammonia addition on the morphology and size of silver particles reduced by ascorbic acid, Powder Technol. 233 (2013) 91-95.
DOI: 10.1016/j.powtec.2012.08.036
Google Scholar
[24]
L.P. Ren, W.L. Dai, X.L. Yang, Y. Cao, H. Li and K.N. Fan, Novel highly active Ag-SiO2-Al2O3-ZnO catalyst for the production of anhydrous HCHO from direct dehydrogenation of CH3OH, Appl. Catal. A 273 (2004) 83-88.
DOI: 10.1016/j.apcata.2004.06.015
Google Scholar
[25]
G. Liu, Z.H. Huang and F. Kang, Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature, J. Hazard. Mater. 215-216 (2012) 166-172.
DOI: 10.1016/j.jhazmat.2012.02.050
Google Scholar
[26]
I.A. Wani, A. Ganguly, J. Ahmed and T. Ahmad, Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies, Mater. Lett. 65 (2011) 520-522.
DOI: 10.1016/j.matlet.2010.11.003
Google Scholar
[27]
R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan and A. Stephen, ZnO/Ag nanocomposite: An efficient catalyst for the degradation studies of textile effluents under visible light, Mater. Sci. Eng. C 33 (2013).
DOI: 10.1016/j.msec.2013.01.046
Google Scholar
[28]
C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Iv and T. Guo, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182 (2010) 123-129.
DOI: 10.1016/j.jhazmat.2010.05.141
Google Scholar