[1]
V.I. Andreev, The Method of Separation of Variables in the Problem of Theory of Elasticity for Radially Inhomogeneous Cylinder, Appl. Mech. Mater. 752-753 (2015) 593-598.
DOI: 10.4028/www.scientific.net/amm.752-753.593
Google Scholar
[2]
V.I. Andreev, N.Y. Tsybin, Generalization of Michel's solution to plane problem theory of elasticity in polar coordinates in the event of a radially inhomogeneous body, WIT Trans. Model. Simul. WIT Press. 57 (2014) 215-227.
DOI: 10.2495/be370181
Google Scholar
[3]
V.I. Andreev, A.S. Avershyev, Nonstationary Problem Moisture Elasticity for Inhomo-geneous Hollow Thick-walled Sphere, Adv. Mater. Res. 838-841 (2014) 254-258.
DOI: 10.4028/www.scientific.net/amr.838-841.254
Google Scholar
[4]
V.I. Andreev, D.A. Kapliy, Influence of inhomogeneity on the stress state of the hemisphere under the locally distributed vertical load, Proc. Eng. 111 (2015) 36-41.
DOI: 10.1016/j.proeng.2015.07.032
Google Scholar
[5]
N.P. Abovskiy, I.P. Andreev, A.P. Deruga, V.I. Savchenkov, Numerical methods in the theory of elasticity and the theory of shells, Publishing house of Krasnoyarsk University, Krasnoyarsk, (1986).
Google Scholar
[6]
V.I. Andreev, E.L. Lopatinskaya, Calculation of elastic hemispherical shells on the action of axially symmetric surface loads, Mod. Probl. Theory Plates Shells, RUDN. 2 (1993) 28-34.
Google Scholar
[7]
V.I. Andreev, I.A. Dubrovskiy, Stress state of the hemispherical shell at front movement radiating field, Appl. Mech. Mater. 405-408 (2013) 1073-1076.
DOI: 10.4028/www.scientific.net/amm.405-408.1073
Google Scholar
[8]
V.I. Andreev, D.A. Kapliy, Stress state of a thick-walled cylindrical shell under the combined action of radiation and temperature field, Adv. Mater. Res. 1006-1007 (2014) 177-180.
DOI: 10.4028/www.scientific.net/amr.1006-1007.177
Google Scholar
[9]
V.I. Andreev, A.S. Avershyev, Stationary Problem of Moisture Elasticity for Inhomogeneous thick-walled Shells, Adv. Mater. Res. 671-674. (2013) 571-575.
DOI: 10.4028/www.scientific.net/amr.671-674.571
Google Scholar
[10]
V.I. Andreev, A.S. Avershyev, Nonstationary problem moisture elasticity for nonhomo-geneous hollow thick-walled cylinder, Trans. Int. Conf. Fluid Struct. Interact. 10-12 April, WITpress, 2013, pp.123-132.
DOI: 10.2495/fsi130111
Google Scholar
[11]
V.I. Andreev, A.S. Avershyev, Two-dimensional problem moisture elasticity for inhomogeneous flat annular area, Appl. Mech. Mater. 580-583 (2014) 2974-2977.
DOI: 10.4028/www.scientific.net/amm.580-583.2974
Google Scholar
[12]
V.I. Andreev, A.S. Avershyev, Two-dimensional problem of moisture elasticity of inhomogeneous spherical array with cavity, Appl. Mech. Mater. 580-583 (2014) 812-815.
DOI: 10.4028/www.scientific.net/amm.580-583.812
Google Scholar
[13]
V.I. Andreev, A.S. Avershyev, The Stress State in The Rock Mass Exposure to Moisture and Temperature Fields, Proc. Eng. 111 (2015) 42-48.
DOI: 10.1016/j.proeng.2015.07.031
Google Scholar
[14]
V.I. Andreev, D.A. Kapliy, Stress State of a Radial Inhomogeneous Semi Sphere under the Vertical Uniform Load, Proc. Eng. 91 (2014) 32-36.
DOI: 10.1016/j.proeng.2014.12.007
Google Scholar
[15]
V.I. Andreev, N.Y. Tsybin, The Inhomogeneous Plate with a Hole: Kirsch's Problem, Proc. Eng. 91 (2014) 26-31.
Google Scholar
[16]
V.I. Andreev, Numerical-analytical solution of two-dimensional problem for elastic radially inhomogeneous thick-walled cylinder, Appl. Mech. Mater. 752-753 (2015) 642-647.
DOI: 10.4028/www.scientific.net/amm.752-753.642
Google Scholar