[1]
J.L. Chaboche and P.M. Lesne, Linear continuous fatigue damage model, Fatig. Fract. Eng. Mater. Struct. 11(1) (1988) 1-17.
Google Scholar
[2]
J. Lemaitre and A. Plumtree, Application of damage concepts to predict creep–fatigue Failures, J. Eng. Mat. Tech. Trans. ASME. 101 (1979) 248–292.
DOI: 10.1115/1.3443689
Google Scholar
[3]
H.S.C. Mattos, G. Minak, F.D. Gioacchino and A. Soldà, Modeling the superplastic behavior of Mg alloy sheets under tension using a continuum damage theory, Mater. Des. 30 (2009) 1674–1679.
DOI: 10.1016/j.matdes.2008.07.013
Google Scholar
[4]
V.N. Do, C.H. Lee and K.H. Chang, High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model, I. J. Fatig. 70 (2015) 51–62.
DOI: 10.1016/j.ijfatigue.2014.08.013
Google Scholar
[5]
Y.C. Xiao, S. Li and Z. Gao, A continuum damage mechanics model for high cycle Fatigue, Int. J. Fatig. 20(7) (1998) 503–508.
DOI: 10.1016/s0142-1123(98)00005-x
Google Scholar
[6]
N.E. Dowling, Mean stress effects in stress-life and strain-life fatigue, 2nd SAE Brasil International Conference on Fatigue, Sao Paulo, Brazil, SAE, June (2004).
DOI: 10.4271/2004-01-2227
Google Scholar
[7]
K. Walker, The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum, in: Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462. Am. Soc. for Testing and Materials, Philadelphia, PA, 1970, p.68.
DOI: 10.1520/stp32032s
Google Scholar
[8]
Z. Gao, Experimental Design for Fatigue Properties and Data Processing, Beihang University Press, (1999).
Google Scholar