[1]
C.D.M. Liljedahl, A.D. Crocombe, M.M.A. Wahab, I.A. Ashcroft, Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach, Int. J. Adhes. & Adhes. 27 (2007) 505–518.
DOI: 10.1016/j.ijadhadh.2006.09.015
Google Scholar
[2]
W.K. Loh, A.D. Crocombe, M.M.A. Wahab, I.A. Ashcroft, Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive, Int. J. Adhes. & Adhes. 25 (2005) 1–12.
DOI: 10.1016/j.ijadhadh.2004.02.002
Google Scholar
[3]
L. Li, M. Liu, S. Li, Morphology effect on water sorption in a thermoplastic modified epoxy system, Polymer 45 (2004) 2837-2842.
DOI: 10.1016/j.polymer.2004.02.002
Google Scholar
[4]
M.R. Vanlandingham, E.F. Eduljee, J.W. Gillespie JR, Moisture diffusion in epoxy system, Journal of Applied Polymer Science 71 (1999) 787-798.
DOI: 10.1002/(sici)1097-4628(19990131)71:5<787::aid-app12>3.0.co;2-a
Google Scholar
[5]
Y. Li, J. Miranda, H.J. Sue, Hygrothermal diffusion behaviour in bismaleimide resin, Polymer 42 (2001) 7791-7799.
DOI: 10.1016/s0032-3861(01)00241-5
Google Scholar
[6]
M.Y.M. Chiang, M.F. Garcia, Relation of swelling and Tg depression to the apparent free volume of a particle-filled, epoxy-based adhesive, Journal of Applied Polymer Science 87 (2003) 1436-1444.
DOI: 10.1002/app.11576
Google Scholar
[7]
Y.C. Lin, X. Chen, Moisture sorption-desorption-resorption characteristic and its effect on the mechanical behaviour of the epoxy system, Polymer 45 (2005) 11994-12003.
DOI: 10.1016/j.polymer.2005.10.002
Google Scholar
[8]
J. Zhou, J.P. Lucas, Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature, Polymer 40 (1999) 5513-5522.
DOI: 10.1016/s0032-3861(98)00791-5
Google Scholar
[9]
G.Z. Xiao, M.E.R. Shanahan, Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing, Polymer 39 (1998) 3253-3260.
DOI: 10.1016/s0032-3861(97)10060-x
Google Scholar
[10]
G.Z. Xiao, M.E.R. Shanahan, Water absorption and desorption in an epoxy resin with degradation, Journal of Polymer Science: Part B: Polymer Physics 35 (1997) 2659-2670.
DOI: 10.1002/(sici)1099-0488(19971130)35:16<2659::aid-polb9>3.0.co;2-k
Google Scholar
[11]
I.A. Aschroft, M.M.A. Wahab, A.D. Crocombe, D.J. Hughes, S.J. Shaw, The effect of environment on the fatigue of bonded composite joints. Part 1: testing and fractography, Composites: Part A 32 (2001) 45-58.
DOI: 10.1016/s1359-835x(00)00131-7
Google Scholar
[12]
S. Sugiman, A.D. Crocombe, I.A. Aschroft, Experimental and numerical investigation of the static response of environmentally aged adhesively bonded joints, Int. J. Adhes. & Adhes. 40 (2013) 224–237.
DOI: 10.1016/j.ijadhadh.2012.08.007
Google Scholar
[13]
R.D. Adams, J.W. Cowap, Farquharson, G.M. Margary, D. Vaughn, The relative merits of the Boeing wedge test and double cantilever beam test for assessing the durability of adhesively bonded joints, with particular reference to the use of fracture mechanics, Int. J. Adhes. & Adhes. 29 (2009).
DOI: 10.1016/j.ijadhadh.2009.02.010
Google Scholar
[14]
A.J. Kinloch, S.J. Shaw, The fracture resistance of a toughened epoxy adhesive, Journal of Adhesion 12 (1981) 59-77.
Google Scholar
[15]
S. Azari, M. Papini, J.K. Spelt, Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints–Part I: Experiments, Eng. Fracture Mechanics 78 (2011) 153-162.
DOI: 10.1016/j.engfracmech.2010.06.025
Google Scholar
[16]
J. Crank, The Mathematic of diffusion, 2nd edition, Oxford University Press, London, (1975).
Google Scholar
[17]
S.R. Ranade, Y. Guan, D.C. Ohanehi, J.G. Dillard, R.C. Batra, D.A. Dillard, A tapered bondline thickness double cantilever beam (DCB) specimen geometry for combinatorial fracture studies of adhesive bonds, Int. J. Adhes. & Adhes. 55 (2014).
DOI: 10.1016/j.ijadhadh.2014.08.006
Google Scholar