Effect of Adhesive Layer Thickness on the Shear Strength of Adhesively Bonded Steel Joints in Wet Environment

Article Preview

Abstract:

The paper presents the static strength of adhesively bonded steel joints aged in deionized water at a temperature of 60°C for 15 days at various adhesive thicknesses from 0.1 mm to 0.5 mm. Water uptake and the bulk adhesive tensile properties after aged in the same environment as the joints were also presented. It has been shown that water diffusion into the adhesive is non Fickian. The absorbed water in the adhesive significantly decreases the mechanical properties and it affects the static strength of the bonded steel joints. The effect of water is shown to be significant when the adhesive thickness is thicker than 0.2 mm as the static strength decreases sharply. This information is useful when designing the adhesive joints using thick adhesive layer exposed in moist environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-82

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.D.M. Liljedahl, A.D. Crocombe, M.M.A. Wahab, I.A. Ashcroft, Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach, Int. J. Adhes. & Adhes. 27 (2007) 505–518.

DOI: 10.1016/j.ijadhadh.2006.09.015

Google Scholar

[2] W.K. Loh, A.D. Crocombe, M.M.A. Wahab, I.A. Ashcroft, Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive, Int. J. Adhes. & Adhes. 25 (2005) 1–12.

DOI: 10.1016/j.ijadhadh.2004.02.002

Google Scholar

[3] L. Li, M. Liu, S. Li, Morphology effect on water sorption in a thermoplastic modified epoxy system, Polymer 45 (2004) 2837-2842.

DOI: 10.1016/j.polymer.2004.02.002

Google Scholar

[4] M.R. Vanlandingham, E.F. Eduljee, J.W. Gillespie JR, Moisture diffusion in epoxy system, Journal of Applied Polymer Science 71 (1999) 787-798.

DOI: 10.1002/(sici)1097-4628(19990131)71:5<787::aid-app12>3.0.co;2-a

Google Scholar

[5] Y. Li, J. Miranda, H.J. Sue, Hygrothermal diffusion behaviour in bismaleimide resin, Polymer 42 (2001) 7791-7799.

DOI: 10.1016/s0032-3861(01)00241-5

Google Scholar

[6] M.Y.M. Chiang, M.F. Garcia, Relation of swelling and Tg depression to the apparent free volume of a particle-filled, epoxy-based adhesive, Journal of Applied Polymer Science 87 (2003) 1436-1444.

DOI: 10.1002/app.11576

Google Scholar

[7] Y.C. Lin, X. Chen, Moisture sorption-desorption-resorption characteristic and its effect on the mechanical behaviour of the epoxy system, Polymer 45 (2005) 11994-12003.

DOI: 10.1016/j.polymer.2005.10.002

Google Scholar

[8] J. Zhou, J.P. Lucas, Hygrothermal effects of epoxy resin. Part II: variations of glass transition temperature, Polymer 40 (1999) 5513-5522.

DOI: 10.1016/s0032-3861(98)00791-5

Google Scholar

[9] G.Z. Xiao, M.E.R. Shanahan, Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing, Polymer 39 (1998) 3253-3260.

DOI: 10.1016/s0032-3861(97)10060-x

Google Scholar

[10] G.Z. Xiao, M.E.R. Shanahan, Water absorption and desorption in an epoxy resin with degradation, Journal of Polymer Science: Part B: Polymer Physics 35 (1997) 2659-2670.

DOI: 10.1002/(sici)1099-0488(19971130)35:16<2659::aid-polb9>3.0.co;2-k

Google Scholar

[11] I.A. Aschroft, M.M.A. Wahab, A.D. Crocombe, D.J. Hughes, S.J. Shaw, The effect of environment on the fatigue of bonded composite joints. Part 1: testing and fractography, Composites: Part A 32 (2001) 45-58.

DOI: 10.1016/s1359-835x(00)00131-7

Google Scholar

[12] S. Sugiman, A.D. Crocombe, I.A. Aschroft, Experimental and numerical investigation of the static response of environmentally aged adhesively bonded joints, Int. J. Adhes. & Adhes. 40 (2013) 224–237.

DOI: 10.1016/j.ijadhadh.2012.08.007

Google Scholar

[13] R.D. Adams, J.W. Cowap, Farquharson, G.M. Margary, D. Vaughn, The relative merits of the Boeing wedge test and double cantilever beam test for assessing the durability of adhesively bonded joints, with particular reference to the use of fracture mechanics, Int. J. Adhes. & Adhes. 29 (2009).

DOI: 10.1016/j.ijadhadh.2009.02.010

Google Scholar

[14] A.J. Kinloch, S.J. Shaw, The fracture resistance of a toughened epoxy adhesive, Journal of Adhesion 12 (1981) 59-77.

Google Scholar

[15] S. Azari, M. Papini, J.K. Spelt, Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints–Part I: Experiments, Eng. Fracture Mechanics 78 (2011) 153-162.

DOI: 10.1016/j.engfracmech.2010.06.025

Google Scholar

[16] J. Crank, The Mathematic of diffusion, 2nd edition, Oxford University Press, London, (1975).

Google Scholar

[17] S.R. Ranade, Y. Guan, D.C. Ohanehi, J.G. Dillard, R.C. Batra, D.A. Dillard, A tapered bondline thickness double cantilever beam (DCB) specimen geometry for combinatorial fracture studies of adhesive bonds, Int. J. Adhes. & Adhes. 55 (2014).

DOI: 10.1016/j.ijadhadh.2014.08.006

Google Scholar