Base Aspect Ratio Effects on Resonant Fluid Sloshing in a Rectangular Tank

Article Preview

Abstract:

A PSME model is used to study the base aspect ratio effect on resonant fluid sloshing in a 3D tank. Three different depth classes (shallow water, intermediate depth and finite depth) and three base aspect ratios (very long base, half width base and square base) are considered. Longitudinal and diagonal excitations are applied to all cases. Results show that sloshing in lower depth tank strongly depends on the base aspect ratio. Keywords: PSME method; Nonlinear sloshing waves; Base aspect ratio effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-66

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ibrahim R.A. 2005. Liquid sloshing dynamics, Cambridge University Press, Cambridge.

Google Scholar

[2] Faltinsen O.M. Timokha A.N. 2009. Sloshing, Cambridge University Press, Cambridge.

Google Scholar

[3] Faltinsen O.M. Rognebakke O.F. Timokha A.N. 2003. Resonant three-dimensional nonlinear sloshing in a square-base basin. J. Fluid Mech. 487: 1–42.

DOI: 10.1017/s0022112003004816

Google Scholar

[4] Akyildiz H. Erdem Unal N. 1996. Sloshing in a three-dimensional rectangular tank: Numerical simulation and experimental validation. Ocean Eng. 33: 2135–2149.

DOI: 10.1016/j.oceaneng.2005.11.001

Google Scholar

[5] Wu G.X. Ma Q.W. Eatock Taylor R. 1998. Numerical simulation of sloshing waves in a 3D tank based on a finite element methods. Appl. Ocean Res. 20: 337–355.

DOI: 10.1016/s0141-1187(98)00030-3

Google Scholar

[6] Chern M. J Vaziri N. Syamsuri S. Borthwick A.G.L. 2012. Pseudospectral solution for three-dimensional non-linear sloshing in shallow water rectangular tank, J. Fluid. Struct. 35: 160-184.

DOI: 10.1016/j.jfluidstructs.2012.08.003

Google Scholar

[7] Ockendon H. Ockendon J.R. Peake M.R. Chester W. 1993. Geometrical effects in resonant gas oscillations. J. Fluid Mech. 257: 201–217.

DOI: 10.1017/s0022112093003040

Google Scholar

[8] Feng Z.C. Sethna P.R. 1993. Symmetry-breaking bifurcations in resonant surface waves. J. Fluid Mech. 199: 495–518.

DOI: 10.1017/s0022112089000455

Google Scholar

[9] Faltinsen O.M. Rognebakke O.F. Timokha A.N. 2006. Resonant three-dimensional nonlinear loshing in a square-base basin. Part 3. Base aspect ratio perturbations. J. Fluid Mech. 551: 93–116.

DOI: 10.1017/s0022112005008281

Google Scholar

[10] Vaziri N. Chern M.J. Borthwick A.G.L. 2011. Pseudospectral σ-transformation model of solitary waves in a tank with uneven bed, Comput. Fluids 49: 197-202.

DOI: 10.1016/j.compfluid.2011.05.013

Google Scholar

[11] Chern M.J. Borthwick A.G.L. Eatock Taylor R. 2001. Simulation of nonlinear free surface motions in a cylindrical domain using a Chebyshev Fourier spectral collocation method. Int. J. Numer. Meth. Fluids 36: 465–496.

DOI: 10.1002/fld.146

Google Scholar

[12] Ku H.C. Hatziavramidis D. 1985. Solutions of the 2-dimensional Navier-Stocks equations by Chebyshev expansion methods. Comput. Fluids 13: 99–113.

DOI: 10.1016/0045-7930(85)90035-0

Google Scholar

[13] Forel F.A. 1895. Le Leman: Monographie Limnologique. Rouge, Lausanne.

Google Scholar