The Effect of Circular Saw Blade Clamping Diameter on its Resonant Frequencies

Article Preview

Abstract:

In this paper results of comparison of characteristic resonant frequencies of circular saw blades as a function of the saw clamping diameter from the impact test are presented. Obtained results revealed that proportionally with the increase of the saw clamping diameter also the dynamical stiffness of the saw blade increased. As a consequence of that the resonant frequencies of the saw blade move to higher values. Moreover, with the increase of the saw blade clamping diameter for higher frequencies of forcing vibrations of the saw blade the amplitude of vibration are expected to be decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-28

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Droba, L. Javorek, J. Svoreň, D. Pauliny, New design of circular saw blade body and its influence on critical rotational speed. Drewno. 58 (2015) Issue 194, 147-157.

Google Scholar

[2] G. Gogu, Berechnung der Eigenfrequcnzen yon Kreissiigebliittern mit der Finite-Element-Methode, Holz als Roh- und Werkstoff. 46 (1988) 91-100.

DOI: 10.1007/bf02612051

Google Scholar

[3] R. Ingielewicz, E. Wittbrodt, The natural frequencies of circular saws according to their modal stiffness, Holz als Roh- und Werkstoff vol. 50 (1992) 141-147.

DOI: 10.1007/bf02663255

Google Scholar

[4] A. Kaczmarek, L. Javorek, K. Orłowski, Mode vibrations of plates – experimental analysis. Annals of Warsaw University of Life Science, Forestry and Wood Technology. No 88 (2014) 97-101.

Google Scholar

[5] S. Nishio, E. Marui, Effects of slots on the lateral vibration of a circular saw blade. Int J Mach Tools Manufact. 36 (1996) 771-787.

DOI: 10.1016/0890-6955(95)00088-7

Google Scholar

[6] K. Orlowski, J. Sandak, C. Tanaka, The critical rotational speed of circular saw; simple measurement method and its practical implementations. J Wood Sci. 53 (2007) Issue 5,  388-393.

DOI: 10.1007/s10086-006-0873-5

Google Scholar

[7] S. Prokeš, Predpoklady pouzivani tencich pilovych kotoucu. Drevo vol. 30 (1975) 3-8.

Google Scholar

[8] S.G. Schajer, Simple formulas for natural frequencies and critical speeds of circular saws. Forest Products Journal vol. 36 (1986) No. 2, 37-43.

Google Scholar

[9] S.G. Schajer, Understanding saw tensioning. Holz als Roh- und Werkstoff vol. 42 (1984) 425-430.

DOI: 10.1007/bf02612860

Google Scholar

[10] Y.M. Stakhiev, Research on circular saws vibration in Russia: from theory and experiment to the needs of industry. Holz als Roh- und Werkstoff vol. 56 (1998) 131-137.

DOI: 10.1007/s001070050284

Google Scholar

[11] Y.M. Stakhiev, Research on circular saw disc problems: several of results. Holz als Roh- und Werkstoff vol. 61(2003) 13-22.

DOI: 10.1007/s00107-002-0353-6

Google Scholar

[12] Y.M. Stakhiev, Today and tomorrow circular saw blades: Russian version. Holz als Roh- und Werkstoff vol. 58 (2000) 229-240.

DOI: 10.1007/s001070050417

Google Scholar

[13] A. Strzelecki, Erzwungene Schwingungen und Resonanzschwingung von Kreissägeblättern für den Einschnitt von Holz. 1. Mitteilung: Gleichmäßige Erwärmung des Sägeblattes. Holztechnologie vol. 15 (1974) No. 3, 132-142.

Google Scholar

[14] D. Šteuček, Analýza hluku pílových kotúčov pomocou vlastných frekvencií. Bezpečná práca, vol. 2 (1971) No. 4, 10-15.

Google Scholar

[15] D. Šteuček, Zisťovanie kritických obrátok pílových kotúčov. Bezpečná práca, č. 5 vol. 2 (1971) No. 5, 7-11.

Google Scholar

[16] J. Svoreň, The analysis of the effects of the number of teeth of circular-saws blade on the critical rotation speed. Acta Facultatis Technicae XVII (2012) 109-117.

Google Scholar

[17] J. Svoreň, L. Javorek, A. Droba, D. Pauliny, Comparison of natural frequencies values of circular saw blade determined by different methods. Drvna Industrija. 66 (2015) Issue 2, 123-128.

DOI: 10.5552/drind.2015.1316

Google Scholar

[18] Davidson Physics, 2015: http: /www. phy. davidson. edu/stuhome/derekk/resonance/pages/ plates. htm (access on April 10, 2015).

Google Scholar

[19] Institute of Sound, 2015: http: /resource. isvr. soton. ac. uk/spcg/tutorial/tutorial/Tutorial_files/ Web-standing-membrane. htm (access on April 10, 2015).

Google Scholar