Integrated Parameter Management Concept for Simplified Implementation of Control, Motion Planning and Process Optimization Methods

Article Preview

Abstract:

For complex automation tasks, the configuration and parametrization of both hardware and software components involves the main part of the required commissioning time. To simplify this process and significantly reduce the required expense, an integrated parameter and data management concept is proposed. Several advanced methods for an optimized process design simultaneously access a global parameter database. In this manner, the shared parameters are synchronized and verified to improve the performance and maximize the robustness of each individual method and, therewith, optimize the entire production process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-122

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kagermann, W. Lukas and W. Wahlster, Industrie 4. 0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution, VDI Nachrichten vol. 13/11, (2011).

Google Scholar

[2] D. Beckmann, M. Wielitzka, M. Dagen and T. Ortmaier, Online Parameter Estimation with Sensitivity-based Excitation-Monitoring of a Mechatronic Drive System, VDI Antriebstechnik, Germany, (2015).

Google Scholar

[3] W. Singhose, W. P. Seering and N. C. Singer, Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs, ASME J. of Mechanical Design vol 116 , vol. 112, (1994).

DOI: 10.1115/1.2919428

Google Scholar

[4] J. Öltjen, J. Kotlarski and T. Ortmaier, Reduction of End Effector Oscillations of a Parallel Mechanism with Modified Motion Profiles, Proc. of the 10th IEEE Int. Conf. on Industrial Electronics and Applications, (2015).

DOI: 10.1109/iciea.2015.7334224

Google Scholar

[5] C. Hansen, K. Eggers, J. Kotlarski and T. Ortmaier, Concurrent Energy Efficiency Optimization of Multi-Axis Positioning Tasks, Proc. of the IEEE Int. Conf. on Industrial Electronics and Applications, (2015).

DOI: 10.1109/iciea.2015.7334167

Google Scholar

[6] M. Grewal and A. Andrews, Kalman Filtering: Theory and Practice with MATLAB, WileyIEEE Press, (2014).

Google Scholar

[7] M. H. Riva, D. Beckmann, M. Dagen and T. Ortmaier, Online Parameter and Process Covariance Estimation Using Adaptive EKF and SRCuKF Approaches, IEEE Multi-Conf. on Systems and Control, (2015).

DOI: 10.1109/cca.2015.7320776

Google Scholar

[8] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic Machines and Robots, Springer, (2008).

Google Scholar

[9] N. C. Singer and W. P. Seering, Preshaping command inputs to reduce system vibration, Trans. ASME, J. Dyn. Sys. Meas. Control, (1990).

DOI: 10.21236/ada208153

Google Scholar

[10] J. Vaughan, Dynamics and Control of Mobile Cranes, PhD Thesis, Georgia Institute of Technology, (2008).

Google Scholar

[11] C. Hansen, J. Kotlarski and T. Ortmaier, Path Planning Approach for the Amplification of Electrical Energy Exchange in Multi Axis Robotic Systems, Proc. of the IEEE Int. Conf. on Mechatronics and Automation, (2013).

DOI: 10.1109/icma.2013.6617891

Google Scholar

[12] C. Hansen and J. Kotlarski and T. Ortmaier, Experimental Validation of Advanced Minimum Energy Robot Trajectory Optimization, Proc. of the IEEE Int. Conf. on Advanced Robotics, (2013).

DOI: 10.1109/icar.2013.6766463

Google Scholar

[13] J. Kennedy and R. Eberhart, Particle Swarm Optimization, Proc. of the IEEE Int. Conf. on Neural Networks, (1995).

Google Scholar