[1]
J. Schmidtler, C. Hölzel, V. Knott, K. Bengler, Human centered assistance applications for production, in: 5th International Conference on Applied Human Factors and Ergonomics, Poland, pp.380-391, (2014).
DOI: 10.54941/ahfe100459
Google Scholar
[2]
R. Weidner, Z. Yao, J. P. Wulfsberg, R. A. Goehlich, S. Mehler, Modular Support Systems for Air- and Spacecraft Industry, in: Band zur ersten Transdisziplinären Konferenz Technische Unterstützungssysteme, die die Menschen wirklich wollen, pp.347-358, (2014).
Google Scholar
[3]
M. Kagerer, M. Huedig, T. C. Lueth, F. Irlinger, Manual microassembly system with integrated squeegee device for homogenous and defined adhesive layers for bimorph piezoelectric actuators using in drop-on-demand techniques, in: Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on Date of Conference, pp.1911-1917, (2013).
DOI: 10.1109/robio.2013.6739748
Google Scholar
[4]
A. Karafillidis, R. Weidner, Grundlagen einer Theorie und Klassifikation technischer Unterstützung, in: R. Weidner, T. Redlich, J. P. Wulfsberg (Eds. ), Technische Unterstützungssysteme, Springer-Verlag, Berlin, pp.66-89, (2015).
DOI: 10.1007/978-3-662-48383-1_2
Google Scholar
[5]
R. Weidner, A. Karafillidis, Three General Determinants of Support-Systems, in: Applied Me-chanics and Materials Vol. 794, pp.555-562, Trans Tech Publications, Schweiz, (2015).
DOI: 10.4028/www.scientific.net/amm.794.555
Google Scholar
[6]
K. Ogushi, A. Nishino, K. Maeda, K. Ueda, Calibration chain for hand torque screwdrivers, in: Proceedings of SICE Annual Conference (SICE), pp.1471-1476, (2012).
DOI: 10.21014/acta_imeko.v4i2.226
Google Scholar
[7]
S. Bruno, O. Khatib, Springer handbook of robotics, Springer Science+Business Media, Berlin, (2008).
Google Scholar
[8]
G. Reinhart, J. Werner, F. Lange, Robot based system for automation of flow assembly lines, in: Prod. Eng. Res. Dev. 3: 121 - 126, (2009).
DOI: 10.1007/s11740-008-0143-z
Google Scholar
[9]
C. Thomas, F. Busch, B. Kuhlenkötter, J. Deuse, Ensuring Human Safety with Offline Simulation and Real-time Workspace Surveillance to Develop a Hybrid Robot Assistance System for Welding of Assemblies, in: Enabling Manufacturing Competitiveness and Economic Sustainability, Springer, pp.464-470, (2011).
DOI: 10.1007/978-3-642-23860-4_76
Google Scholar
[10]
D. M. Lucke, Ad hoc information acquisition using context aware systems within the multi-variant manufacturing, dissertation, Stuttgart, Fraunhofer-Verl., (2014).
Google Scholar
[11]
A. B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), in: Transactions on Mechatronics, IEEE/ASME, vol. 11, no. 2, pp.128-138, (2006).
DOI: 10.1109/tmech.2006.871087
Google Scholar
[12]
R. Weidner, N. Kong, J. P. Wulfsberg, Human Hybrid Robot: a new concept for supporting manual assembly tasks, Prod. Eng. Res., vol. 7, no. 6, pp.675-684, (2013).
DOI: 10.1007/s11740-013-0487-x
Google Scholar
[13]
R. Weidner, A. Karafillidis, J. P. Wulfsberg, Individual Support in Industrial Production – Outline of a Theory of Support-Systems, in: 49th Annual Hawaii International Conference on System Sciences, pp.1-10, (2016).
DOI: 10.1109/hicss.2016.77
Google Scholar
[14]
R. Weidner, J. P. Wulfsberg, Concept and exemplary realization of Human Hybrid Robot for supporting manual assembly tasks, in: Procedia CIRP 23 (2014), pp.53-58, Conference on Assembly Technologies and Systems.
DOI: 10.1016/j.procir.2014.10.096
Google Scholar
[15]
G. Kamen, D. A. Gabriel, Essentials of electromyography, Human Kinetics, (2010).
Google Scholar
[16]
Plug-in Gait, The standard Vicon full body model (Plug-in Gait) Marker Placement Scheme; http: /www. idmil. org/mocap/Plug-in-Gait+Marker+Placement. pdf, called on December 21th (2015).
DOI: 10.7717/peerj.8006/supp-2
Google Scholar