Towards a Modular and Wearable Support System for Industrial Production

Article Preview

Abstract:

Despite the increasing degree of automation many tasks are still performed manually, especially in production of individualized, sensitive or quality critical products. These tasks, e.g. tasks in or above head level, are often non ergonomic. Thus musculoskeletal diseases can occur. This paper presents a novel concept for a modular and wearable technical support system for reducing musculoskeletal stress. The support system which is based on the approach of Human Hybrid Robot (HHR) can be adapted easily to different users and activities. The system emphasizes on modularity and the use of soft materials for kinematic elements and interfaces in order to gain higher flexibility and increased human safety. The basic idea can be applied to various applications. The focus lies on a functional support system prototype for upper extremities. It comprises a Human-Machine-Interface using a vest equipped with soft kinematic elements as well as a control unit. Moreover, results from a biomechanical case study will be illustrated in order to confirm the ergonomic improvements, especially the comparison of the range of motion and the musculoskeletal stress during tasks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-131

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Schmidtler, C. Hölzel, V. Knott, K. Bengler, Human centered assistance applications for production, in: 5th International Conference on Applied Human Factors and Ergonomics, Poland, pp.380-391, (2014).

DOI: 10.54941/ahfe100459

Google Scholar

[2] R. Weidner, Z. Yao, J. P. Wulfsberg, R. A. Goehlich, S. Mehler, Modular Support Systems for Air- and Spacecraft Industry, in: Band zur ersten Transdisziplinären Konferenz Technische Unterstützungssysteme, die die Menschen wirklich wollen, pp.347-358, (2014).

Google Scholar

[3] M. Kagerer, M. Huedig, T. C. Lueth, F. Irlinger, Manual microassembly system with integrated squeegee device for homogenous and defined adhesive layers for bimorph piezoelectric actuators using in drop-on-demand techniques, in: Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on Date of Conference, pp.1911-1917, (2013).

DOI: 10.1109/robio.2013.6739748

Google Scholar

[4] A. Karafillidis, R. Weidner, Grundlagen einer Theorie und Klassifikation technischer Unterstützung, in: R. Weidner, T. Redlich, J. P. Wulfsberg (Eds. ), Technische Unterstützungssysteme, Springer-Verlag, Berlin, pp.66-89, (2015).

DOI: 10.1007/978-3-662-48383-1_2

Google Scholar

[5] R. Weidner, A. Karafillidis, Three General Determinants of Support-Systems, in: Applied Me-chanics and Materials Vol. 794, pp.555-562, Trans Tech Publications, Schweiz, (2015).

DOI: 10.4028/www.scientific.net/amm.794.555

Google Scholar

[6] K. Ogushi, A. Nishino, K. Maeda, K. Ueda, Calibration chain for hand torque screwdrivers, in: Proceedings of SICE Annual Conference (SICE), pp.1471-1476, (2012).

DOI: 10.21014/acta_imeko.v4i2.226

Google Scholar

[7] S. Bruno, O. Khatib, Springer handbook of robotics, Springer Science+Business Media, Berlin, (2008).

Google Scholar

[8] G. Reinhart, J. Werner, F. Lange, Robot based system for automation of flow assembly lines, in: Prod. Eng. Res. Dev. 3: 121 - 126, (2009).

DOI: 10.1007/s11740-008-0143-z

Google Scholar

[9] C. Thomas, F. Busch, B. Kuhlenkötter, J. Deuse, Ensuring Human Safety with Offline Simulation and Real-time Workspace Surveillance to Develop a Hybrid Robot Assistance System for Welding of Assemblies, in: Enabling Manufacturing Competitiveness and Economic Sustainability, Springer, pp.464-470, (2011).

DOI: 10.1007/978-3-642-23860-4_76

Google Scholar

[10] D. M. Lucke, Ad hoc information acquisition using context aware systems within the multi-variant manufacturing, dissertation, Stuttgart, Fraunhofer-Verl., (2014).

Google Scholar

[11] A. B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), in: Transactions on Mechatronics, IEEE/ASME, vol. 11, no. 2, pp.128-138, (2006).

DOI: 10.1109/tmech.2006.871087

Google Scholar

[12] R. Weidner, N. Kong, J. P. Wulfsberg, Human Hybrid Robot: a new concept for supporting manual assembly tasks, Prod. Eng. Res., vol. 7, no. 6, pp.675-684, (2013).

DOI: 10.1007/s11740-013-0487-x

Google Scholar

[13] R. Weidner, A. Karafillidis, J. P. Wulfsberg, Individual Support in Industrial Production – Outline of a Theory of Support-Systems, in: 49th Annual Hawaii International Conference on System Sciences, pp.1-10, (2016).

DOI: 10.1109/hicss.2016.77

Google Scholar

[14] R. Weidner, J. P. Wulfsberg, Concept and exemplary realization of Human Hybrid Robot for supporting manual assembly tasks, in: Procedia CIRP 23 (2014), pp.53-58, Conference on Assembly Technologies and Systems.

DOI: 10.1016/j.procir.2014.10.096

Google Scholar

[15] G. Kamen, D. A. Gabriel, Essentials of electromyography, Human Kinetics, (2010).

Google Scholar

[16] Plug-in Gait, The standard Vicon full body model (Plug-in Gait) Marker Placement Scheme; http: /www. idmil. org/mocap/Plug-in-Gait+Marker+Placement. pdf, called on December 21th (2015).

DOI: 10.7717/peerj.8006/supp-2

Google Scholar