Characteristics of and Approaches to Flocking in Swarm Robotics

Article Preview

Abstract:

One of the basic collective behaviors of swarm robotic systems is flocking, which has been actively studied for more than a decade and mimics a natural phenomenon where a group of animals move together as a single entity. In flocking, each robot in the flock tries to adjust its velocity and align with other robots in the flock while maintaining a predetermined pattern (formation) and avoiding collisions with obstacle and other members of the flock. This paper presents an up-to-date review on the characteristics of flocking problems and tasks, as well as solution approaches to flocking problems. We have addressed flock characteristics from the formation type, robustness, leader-follower, information, and communication aspects. Also, various flocking tasks of exploration, motion planning and navigation, shepherding, covering, object transportation, and simultaneous object collection and shepherding are investigated. Also, a new categorization of approaches to flocking is presented, which contains Leader-Follower, Behavior-based, Control-based, Fault-Tolerant, and Hybrid approaches. Finally, a comparative table on the characteristics of flocking problems appeared in various works of the literature is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-249

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Varghese B, McKee G. Swarm Patterns: Trends & Transformation Tools: INTECH Open Access Publisher; (2011).

Google Scholar

[2] Poduri S, Sukhatme GS. Achieving connectivity through coalescence in mobile robot networks. Proceedings of the 1st international conference on Robot communication and coordination: IEEE Press; 2007. p.4.

DOI: 10.4108/icst.robocomm2007.2272

Google Scholar

[3] Balch T, Arkin RC. Behavior-based formation control for multirobot teams. Robotics and Automation, IEEE Transactions on. 1998; 14: 926-39.

DOI: 10.1109/70.736776

Google Scholar

[4] Michaud F, Letourneau D, Guilbert M, Valin J-M. Dynamic robot formations using directional visual perception. Intelligent Robots and Systems, IEEE/RSJ International Conference on: IEEE; 2002. pp.2740-5.

DOI: 10.1109/irds.2002.1041684

Google Scholar

[5] Reynolds CW. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH computer graphics: ACM; 1987. pp.25-34.

DOI: 10.1145/37402.37406

Google Scholar

[6] Xiong N, He J, Yang Y, He Y, Kim T-h, Lin C. A survey on decentralized flocking schemes for a set of autonomous mobile robots. Journal of Communications. 2010; 5: 31-8.

DOI: 10.4304/jcm.5.1.31-38

Google Scholar

[7] Lussier B, Chatila R, Ingrand F, Killijian M-O, Powell D. On fault tolerance and robustness in autonomous systems. Proceedings of the 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges for dependable robots in human environments2004. pp.351-8.

DOI: 10.1109/mra.2006.250559

Google Scholar

[8] Masehian E, Royan M. Cooperative Control of a Multi Robot Flocking System for Simultaneous Object Collection and Shepherding. Computational Intelligence: Springer; 2015. pp.97-114.

DOI: 10.1007/978-3-319-11271-8_7

Google Scholar

[9] Harrison JF, Vo C, Lien J-M. Scalable and robust shepherding via deformable shapes. Motion in Games: Springer; 2010. pp.218-29.

DOI: 10.1007/978-3-642-16958-8_21

Google Scholar

[10] Yu W, Chen G, Cao M. Distributed leader–follower flocking control for multi-agent dynamical systems with time-varying velocities. Systems & Control Letters. 2010; 59: 543-52.

DOI: 10.1016/j.sysconle.2010.06.014

Google Scholar

[11] Canepa D, Potop-Butucaru MG. Stabilizing flocking via leader election in robot networks. Stabilization, Safety, and Security of Distributed Systems: Springer; 2007. pp.52-66.

DOI: 10.1007/978-3-540-76627-8_7

Google Scholar

[12] Gervasi V, Prencipe G. Coordination without communication: the case of the flocking problem. Discrete Applied Mathematics. 2004; 144: 324-44.

DOI: 10.1016/j.dam.2003.11.010

Google Scholar

[13] Lewis MA, Tan K-H. High precision formation control of mobile robots using virtual structures. Autonomous Robots. 1997; 4: 387-403.

Google Scholar

[14] Fierro R, Das AK, Kumar V, Ostrowski JP. Hybrid control of formations of robots. Robotics and Automation, 2001 Proceedings 2001 ICRA IEEE International Conference on: IEEE; 2001. pp.157-62.

DOI: 10.1109/robot.2001.932546

Google Scholar

[15] Freslund J, Mataric M. A general, local algorithm for robot formations. Submitted to IEEE Trans Robotics and Automation, Special Issue on Multi-Robot Systems. (2001).

Google Scholar

[16] Brett J. Applied Flock Theory, in Scrum alliance. available at http: /wwwagileacademycomau/agile/ sites/default/files/Flock Theory Appliedpdf. (2009).

Google Scholar

[17] Bouraqadi N, Doniec A, de Douai E. Flocking-based multi-robot exploration. National conference on control architectures of robots; (2009).

Google Scholar

[18] Kumar A, Sharma S, Tiwari R, Majumdar S. Area exploration by flocking of multi robot. Procedia Engineering. 2012; 41: 377-82.

DOI: 10.1016/j.proeng.2012.07.187

Google Scholar

[19] Jia Y, Wang L. Experimental implementation of distributed flocking algorithm for multiple robotic fish. Control Engineering Practice. 2014; 30: 1-11.

DOI: 10.1016/j.conengprac.2014.05.004

Google Scholar

[20] Zhong X, Zhong X, Peng X. Velocity-Change-Space-based dynamic motion planning for mobile robots navigation. Neurocomputing. 2014; 143: 153-63.

DOI: 10.1016/j.neucom.2014.06.010

Google Scholar

[21] Fan M-C, Zhang H-T, Wang M. Bipartite flocking for multi-agent systems. Communications in Nonlinear Science and Numerical Simulation. 2014; 19: 3313-22.

DOI: 10.1016/j.cnsns.2013.10.009

Google Scholar

[22] Mecholsky NA, Ott E, Antonsen TM. Obstacle and predator avoidance in a model for flocking. Physica D: Nonlinear Phenomena. 2010; 239: 988-96.

DOI: 10.1016/j.physd.2010.02.007

Google Scholar

[23] Bayazit OB, Lien J-M, Amato NM. Simulating flocking behaviors in complex environments. Proc of the Pacific Conf on Computer Graphics and Applications: Citeseer; (2002).

DOI: 10.1109/pccga.2002.1167844

Google Scholar

[24] Rubenstein M, Cabrera A, Werfel J, Habibi G, McLurkin J, Nagpal R. Collective transport of complex objects by simple robots: theory and experiments. Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems: International Foundation for Autonomous Agents and Multiagent Systems; 2013. pp.47-54.

DOI: 10.1109/iros.2013.6696401

Google Scholar

[25] Garrell A, Sanfeliu A, Moreno-Noguer F. Discrete time motion model for guiding people in urban areas using multiple robots. Intelligent Robots and Systems, 2009 IROS 2009 IEEE/RSJ International Conference on: IEEE; 2009. pp.486-91.

DOI: 10.1109/iros.2009.5354740

Google Scholar

[26] Ferrante E, Turgut AE, Stranieri A, Pinciroli C, Birattari M, Dorigo M. A self-adaptive communication strategy for flocking in stationary and non-stationary environments. Natural Computing. 2014; 13: 225-45.

DOI: 10.1007/s11047-013-9390-9

Google Scholar

[27] Vaughan R, Sumpter N, Henderson J, Frost A, Cameron S. Experiments in automatic flock control. Robotics and Autonomous Systems. 2000; 31: 109-17.

DOI: 10.1016/s0921-8890(99)00084-6

Google Scholar

[28] Lien JM, Bayazit, O.B., Sowell, R.T., Rodriguez, S., and Amato, N.M. Shepherding Behaviors. In Proc IEEE Int Conf Robot Autom (ICRA). 2004; 4: 4159-64.

DOI: 10.1109/robot.2004.1308924

Google Scholar

[29] Lien J-M, Rodriguez S, Malric J-P, Amato NM. Shepherding behaviors with multiple shepherds. Robotics and Automation, 2005 ICRA 2005 Proceedings of the 2005 IEEE International Conference on: IEEE; 2005. pp.3402-7.

DOI: 10.1109/robot.2005.1570636

Google Scholar

[30] Vo C, Harrison JF, Lien JM. Behavior-based motion planning for group control. Intelligent Robots and Systems, 2009 IROS 2009 IEEE/RSJ International Conference on: IEEE; 2009. pp.3768-73.

DOI: 10.1109/iros.2009.5354032

Google Scholar

[31] Staps B. Learning to shepherd an unknown flock, while maintaining apparent flock autonomy. Netherlands: Utrecht University; (2011).

Google Scholar

[32] Xiong N, Li Y, Park JH, Park JH, Yang Y, Tao S. Fast and efficient formation flocking for a group of autonomous mobile robots. Parallel and Distributed Processing, 2008 IPDPS 2008 IEEE International Symposium on: IEEE; 2008. pp.1-8.

DOI: 10.1109/ipdps.2008.4536482

Google Scholar

[33] Barfoot TD, Clark CM. Motion planning for formations of mobile robots. Robotics and Autonomous Systems. 2004; 46: 65-78.

DOI: 10.1016/j.robot.2003.11.004

Google Scholar

[34] Ghapani S, Mei J, Ren W, Song Y. Fully Distributed Flocking with a Moving Leader for Lagrange Networks with Parametric Uncertainties. arXiv preprint arXiv: 150704778. (2015).

DOI: 10.1016/j.automatica.2016.01.004

Google Scholar

[35] Antonelli G, Arrichiello F, Chiaverini S. Flocking for multi-robot systems via the null-space-based behavioral control. Swarm Intelligence. 2010; 4: 37-56.

DOI: 10.1007/s11721-009-0036-6

Google Scholar

[36] Turgut AE, Çelikkanat H, Gökçe F, Şahin E. Self-organized flocking in mobile robot swarms. Swarm Intelligence. 2008; 2: 97-120.

DOI: 10.1007/s11721-008-0016-2

Google Scholar

[37] Sharma BN, Vanualailai J, Chand U. Flocking of multi-agents in constrained environments. European journal of pure and applied mathematics. 2009; 2: 401-25.

Google Scholar

[38] Navarro I, Gutiérrez Á, Matía F, Monasterio-Huelin F. An approach to flocking of robots using minimal local sensing and common orientation. Hybrid Artificial Intelligence Systems: Springer; 2008. pp.616-24.

DOI: 10.1007/978-3-540-87656-4_76

Google Scholar

[39] Wang M, Su H, Zhao M, Chen MZ, Wang H. Flocking of multiple autonomous agents with preserved network connectivity and heterogeneous nonlinear dynamics. Neurocomputing. 2013; 115: 169-77.

DOI: 10.1016/j.neucom.2012.12.033

Google Scholar

[40] Souissi S, Izumi T, Wada K. Oracle-based flocking of mobile robots in crash-recovery model. Theoretical Computer Science. 2011; 412: 4350-60.

DOI: 10.1016/j.tcs.2010.11.011

Google Scholar

[41] Yang Y, Souissi S, Défago X, Takizawa M. Fault-tolerant flocking for a group of autonomous mobile robots. Journal of systems and Software. 2011; 84: 29-36.

DOI: 10.1016/j.jss.2010.08.026

Google Scholar

[42] Shiliang S, Ting W, Chen Y, Xiaofan L, Hai Z. Distributed Fault Detection and Isolation for Flocking in a Multi-robot System with Imperfect Communication. International Journal of Advanced Robotic Systems. 2014; 11.

DOI: 10.5772/58601

Google Scholar

[43] Raghuwaiya K, Singh S, Sharma BN, Lingam GI. Formation types of a flock of 1-trailer mobile robots. Proceedings of the 7th IMT-GT International Conference on Mathematics, Statistics and its Applications2011. pp.368-82.

Google Scholar

[44] Guo W, Lü J, Chen S, Yu X. Second-order tracking control for leader–follower multi-agent flocking in directed graphs with switching topology. Systems & Control Letters. 2011; 60: 1051-8.

DOI: 10.1016/j.sysconle.2011.09.020

Google Scholar

[45] Yasuda T, Adachi A, Ohkura K. Self-organized flocking in mobile robots based on frontal interaction and leadership rules. Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), 15th International Symposium on: IEEE; 2014. pp.594-9.

DOI: 10.1109/scis-isis.2014.7044820

Google Scholar

[46] Tanner HG, Jadbabaie A, Pappas GJ. Stable flocking of mobile agents part II: dynamic topology. Decision and Control, 2003 Proceedings 42nd IEEE Conference on: IEEE; 2003. pp.2016-21.

DOI: 10.1109/cdc.2003.1272911

Google Scholar

[47] Tanner HG, Jadbabaie A, Pappas GJ. Stable flocking of mobile agents, Part I: Fixed topology. Decision and Control, 2003 Proceedings 42nd IEEE Conference on: IEEE; 2003. pp.2010-5.

DOI: 10.1109/cdc.2003.1272910

Google Scholar

[48] Lindhé M, Ögren P, Johansson KH. Flocking with obstacle avoidance: A new distributed coordination algorithm based on voronoi partitions. Robotics and Automation, 2005 ICRA 2005 Proceedings of the 2005 IEEE International Conference on: IEEE; 2005. pp.1785-90.

DOI: 10.1109/robot.2005.1570372

Google Scholar

[49] AlHudhud G, Ayesh A. Real Time Movement Cooredination Technique Based on Flocking Behaviour for Multiple Mobile Robots System. AISB 2008 Convention Communication, Interaction and Social Intelligence2008. p.31.

Google Scholar

[50] Lee G, Chong NY. Flocking controls for swarms of mobile robots inspired by fish schools: INTECH Open Access Publisher; (2008).

DOI: 10.5772/5477

Google Scholar

[51] Liang X, Li X. A new decentralized planning strategy for flocking of swarm robots. Journal of Computers. 2010; 5: 914-21.

Google Scholar

[52] Ferrante E, Turgut AE, Mathews N, Birattari M, Dorigo M. The Role of Explicit Alignment in Self-organized Flocking. (2010).

Google Scholar

[53] Moeslinger C, Schmickl T, Crailsheim K. A Minimalist Flocking Algorithm for Swarm Robots. Advances in Artificial Life Darwin Meets von Neumann. 2011: 375-82.

DOI: 10.1007/978-3-642-21314-4_47

Google Scholar