Rainfall Simulation at Bah Bolon Watershed with Backpropagation Artificial Neural Network Based on Rainfall Data Using Scilab

Article Preview

Abstract:

Abstract. Rainfall simulation is a method of obtaining precipitation data on rainfall station based on precipitation data of other stations in same watershed at the same time, using a linear mathematical model constructed by Artificial Neural Network (ANN) method. The application of the simulation result is useful to provide information for the decision-makers. ANN backpropagation method is the one used in modeling the rainfall in a watershed because it can solve a complex mathematic problem. The objective of research was to find out the hydrologic model and its application to predict precipitation data at Bah Bolon watershed in the future. The input variable of research was data of rain at Bah Jambi rainfall station. The parameters used in this research were Mean Squared Error (MSE)= 0.028, epoch= 1000 iteration, hidden layer number= 2, neuron hidden layer number= 3, momentum= 0.7, learning rate: 0.9, training period= 4 years. The result of model verification shows the very strong correlation between simulated rain data and actual rain data, with score of 0.9664, and the reliability of hydrologic system model at Bah Bolon watershed is 64.48%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-17

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Štěpán Kuchař et al, Simulation Of Uncertainty In Rainfall-Runoff Models And Their Statistical Evaluation In The Floreon+ System on http: /floreon. vsb. cz/ base/Download/1_ML. pdf (2004).

Google Scholar

[2] Turban, E et al, Decision Support System and Intelligent System (Sistem Pendukung Keputusan dan Sistem Cerdas), Penerbit Andi, Yogyakarta, (2005).

Google Scholar

[3] RR. Rintis Hadiani, Analisis Kekeringan Hidrologi (Studi Kasusdi Sub Das Kali Asem Lumajang), Universitas Brawijaya Malang, (2009).

Google Scholar

[4] R. Modarres, Multi-criteria validation of artificial neural network rainfall-runoff modeling, Hydrol. Earth Syst. Sci. 13 , Published by Copernicus Publications on behalf of the European Geosciences Union, 2009, p.411–421.

DOI: 10.5194/hess-13-411-2009

Google Scholar

[5] Am Kalteh, 2008, Rainfall-Runoff Modelling Using Artificial Neural Networks (Anns): Modelling And Understanding, Caspian J. Env. Sci., Vol. 6 No. 1, 2008, pp.53-58.

Google Scholar

[6] Riad, S et al, Rainfall-Runoff Model Using an Artificial Neural Network Approach, Mathematical and Computer Modelling 40, Elsevier. com, 2004, pp.839-846.

DOI: 10.1016/j.mcm.2004.10.012

Google Scholar

[7] Vos, N.J. de, Rainfall-Runoff Modelling Using Artificial Neural Networks, M. Sc. Thesis Report, Delft, Netherlands, (2003).

Google Scholar

[8] Rajurkar, MP et al, Artificial neural networks for daily rainfall-runoff modeling, Hydrologkal Sciences-Jo umai-des Sciences Hydrologiques, 47(6) December (2002).

Google Scholar

[9] Sosrodarsono, Hidrology for Irrigation, Pradnya Paramita, Jakarta, (2003).

Google Scholar

[10] Sri Harto, Hidrology Analysis, Gramedia Pustaka Utama, Jakarta, (1993).

Google Scholar

[11] Test Of Normality Kolmogorov Smirnov Result By Using Minitab on http: /wn. com/test_of_normality_kolmogorov_smirnov_result_by_using_minitab.

DOI: 10.7717/peerj.10623/table-6

Google Scholar

[12] Wickham, Hadley and Stryjewski, Lisa, 40 years of boxplots,  on http: /vita. had. co. nz/papers/boxplots. pdf (2011).

Google Scholar

[13] Rr Rintis Hadiani, Metode Jaringan Syaraf Tiruan untuk Simulasi Data (Studi Kasus Untuk Prediksi Data Debit berdasarkan Data Hujan), UNS Surakarta, (2009).

DOI: 10.22219/jmts.v14i2.3709

Google Scholar

[14] Siang, J. J, Jaringan Syaraf Tiruan dan Pemrograman Menggunkan Matlab Penerbit ANDI, Yogyakarta, (2005).

Google Scholar

[15] About Scilab on http: /www. scilab. org/scilab/about.

Google Scholar

[16] Zulganef, Pemodelan Persamaan Struktur & Aplikasinya Menggunakan Amos 5, Penerbit Pustaka, Bandung, (2006).

Google Scholar

[17] Danang Wibawa Shakti, Analisis Debit Berdasarkan Hujan Kumulatif 15 harian dengan Metode Jaringan Syaraf Tiruan Backpropagation pada DAS Tirtomoyo untuk Titik Sulingi, UNS Surakarta, (2014).

DOI: 10.20961/mateksi.v7i1.36528

Google Scholar