Simulation of Multipass Hot Rolling for 7050 Aluminum Alloys

Article Preview

Abstract:

To determine the relations between rolling passes, mechanical behaviours and microstructure evolution of AA7050 aluminum alloys, finite element modeling of a multipass hot rolling process is developed and employed to investigate thermo-mechanical evolution during this processing. Through parametric studies, the distribution of local strain and temperature across thickness during the hot rolling process are numerically determined. These results are used to determine the subgrain size and thus the microstructure evolution during the hot rolling process are estimated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zúberová, Y. Estrin, T.T. Lamark, M. Janeček, R.J. Hellmig, and M. Krieger, Effect of equal channel angular pressing on the deformation behaviour of magnesium alloy AZ31 under uniaxial compression. Journal of Materials Processing Technology, 2007. 184(1–3): pp.294-299.

DOI: 10.1016/j.jmatprotec.2006.11.098

Google Scholar

[2] C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation. Acta Metallurgica, 1966. 14(9): pp.1136-1138.

DOI: 10.1016/0001-6160(66)90207-0

Google Scholar

[3] J.D. Robson, Microstructural evolution in aluminium alloy 7050 during processing. Materials Science and Engineering: A, 2004. 382(1–2): pp.112-121.

DOI: 10.1016/j.msea.2004.05.006

Google Scholar

[4] H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang, Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation. Materials Science and Engineering: A, 2008. 488(1–2): pp.64-71.

DOI: 10.1016/j.msea.2007.10.051

Google Scholar

[5] J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, and F. Xue, Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain. Materials & Design, 2012. 42: pp.369-377.

DOI: 10.1016/j.matdes.2012.06.032

Google Scholar

[6] W.C. Chen, I.V. Samarasekera, and E.B. Hawbolt, Fundamental phenomena governing heat transfer during rolling. Metallurgical Transactions A, 1993. 24(6): pp.1307-1320.

DOI: 10.1007/bf02668199

Google Scholar

[7] C.H. Moon and Y. Lee, Approximate Model for Predicting Roll Force and Torque in Plate Rolling with Peening Effect Considered. ISIJ International, 2008. 48(10): pp.1409-1418.

DOI: 10.2355/isijinternational.48.1409

Google Scholar

[8] J.R. Davis, Aluminum and Aluminum Alloys. (2005).

Google Scholar

[9] S.F. Wong, P.D. Hodgson, C.J. Chong, and P.F. Thomson, Physical modelling with application to metal working, especially to hot rolling. Journal of Materials Processing Technology, 1996. 62(1–3): pp.260-274.

DOI: 10.1016/0924-0136(95)02219-8

Google Scholar

[10] T.J. Turner, M.P. Miller, and N.R. Barton, The influence of crystallographic texture and slip system strength on deformation induced shape changes in AA 7050 thick plate. Mechanics of Materials, 2002. 34(10): pp.605-625.

DOI: 10.1016/s0167-6636(02)00160-6

Google Scholar