[1]
Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P.A. Deymier, Two-dimensional phononic crystals: Examples and applications, Surface Science Reports 65 (2010) 229.
DOI: 10.1016/j.surfrep.2010.08.002
Google Scholar
[2]
M. Sigalas, E. Economou, Elastic and acoustic wave band structure, J. Sound. Vib. 158 (1992) 377.
DOI: 10.1016/0022-460x(92)90059-7
Google Scholar
[3]
M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71 (1993) (2022).
DOI: 10.1103/physrevlett.71.2022
Google Scholar
[4]
M.S. Kushwaha, Classical band structure of periodic elastic composites, Int. J. Mod. Phys. B 10 (1996) 977.
DOI: 10.1142/s0217979296000398
Google Scholar
[5]
M. Sigalas, E. Economou, Attenuation of multiple-scattered sound, EPL 36 (1996) 241.
DOI: 10.1209/epl/i1996-00216-4
Google Scholar
[6]
M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites, Phys. Rev. B 60 (1999) 11993.
DOI: 10.1103/physrevb.60.11993
Google Scholar
[7]
M. Sigalas, N. Garcıa, Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method, J. Appl. Phys. 87 (2000) 3122.
DOI: 10.1063/1.372308
Google Scholar
[8]
Y. Tanaka, Y. Tomoyasu, S. -i. Tamura, Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch, Phys. Rev. B 62 (2000) 7387.
DOI: 10.1103/physrevb.62.7387
Google Scholar
[9]
Y. Cao, Z. Hou, Y. Liu, Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals, Solid State Commun. 132 (2004) 539.
DOI: 10.1016/j.ssc.2004.09.003
Google Scholar
[10]
W. Axmann, P. Kuchment, An Efficient Finite Element Method for Computing Spectra of Photonic and Acoustic Band-Gap Materials: I. Scalar Case, J. Comput. Phys. 150 (1999) 468.
DOI: 10.1006/jcph.1999.6188
Google Scholar
[11]
W. Kuang, Z. Hou, Y. Liu, The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals, Phys. Lett. A 332 (2004) 481.
DOI: 10.1016/j.physleta.2004.10.009
Google Scholar
[12]
M.S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites, Phys. Rev. B 49 (1994) 2313.
DOI: 10.1103/physrevb.49.2313
Google Scholar
[13]
Y. -H. Liu, C.C. Chang, R. -L. Chern, C.C. Chang, Phononic band gaps of elastic periodic structures: A homogenization theory study, Phys. Rev. B 75 (2007) 054104.
DOI: 10.1103/physrevb.75.054104
Google Scholar
[14]
M. Sigalas, E.N. Economou, Band structure of elastic waves in two dimensional systems, Solid State Commun. 86 (1993) 141.
DOI: 10.1016/0038-1098(93)90888-t
Google Scholar
[15]
J. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, M. Kushwaha, P. Halevi, Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems, J. Phys: Condensed Matter 6 (1994) 8759.
DOI: 10.1088/0953-8984/6/42/008
Google Scholar
[16]
X. -Z. Zhou, Y. -S. Wang, C. Zhang, Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals, J. Appl. Phys. 106 (2009) 014903.
DOI: 10.1063/1.3159644
Google Scholar
[17]
C. Kittel, P. McEuen, P. McEuen, Introduction to solid state physics, Wiley New York, (1976).
Google Scholar