Numerical Analysis and Parametric Study of Phononic Band Gap Structures

Article Preview

Abstract:

Phononic band gap crystals (PnCs) are periodic composite materials and well known for their novel property that can prohibit the propagation of mechanical waves in certain range of frequency. This paper develops the finite element method to calculate band structures of bi-material phononic crystals. Through finite element analysis, complete band gap for longitudinal and transverse waves are obtained by characterizing the dispersion relation in phononic crystals. Phononic crystals with different inclusion shapes in a square and hexagonal unit cell are investigated to study the influence of unit cell topology on band gap size. For a specific pattern, the existence of complete band gap in relation to the density and Lamé constant modulus of composites is studied and critical density ratio and Lamé constant ratio of inclusions versus base material for opening complete band gap are given. The results provide theoretical guidance for designing phononic crystals in practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-126

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P.A. Deymier, Two-dimensional phononic crystals: Examples and applications, Surface Science Reports 65 (2010) 229.

DOI: 10.1016/j.surfrep.2010.08.002

Google Scholar

[2] M. Sigalas, E. Economou, Elastic and acoustic wave band structure, J. Sound. Vib. 158 (1992) 377.

DOI: 10.1016/0022-460x(92)90059-7

Google Scholar

[3] M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett. 71 (1993) (2022).

DOI: 10.1103/physrevlett.71.2022

Google Scholar

[4] M.S. Kushwaha, Classical band structure of periodic elastic composites, Int. J. Mod. Phys. B 10 (1996) 977.

DOI: 10.1142/s0217979296000398

Google Scholar

[5] M. Sigalas, E. Economou, Attenuation of multiple-scattered sound, EPL 36 (1996) 241.

DOI: 10.1209/epl/i1996-00216-4

Google Scholar

[6] M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites, Phys. Rev. B 60 (1999) 11993.

DOI: 10.1103/physrevb.60.11993

Google Scholar

[7] M. Sigalas, N. Garcıa, Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method, J. Appl. Phys. 87 (2000) 3122.

DOI: 10.1063/1.372308

Google Scholar

[8] Y. Tanaka, Y. Tomoyasu, S. -i. Tamura, Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch, Phys. Rev. B 62 (2000) 7387.

DOI: 10.1103/physrevb.62.7387

Google Scholar

[9] Y. Cao, Z. Hou, Y. Liu, Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals, Solid State Commun. 132 (2004) 539.

DOI: 10.1016/j.ssc.2004.09.003

Google Scholar

[10] W. Axmann, P. Kuchment, An Efficient Finite Element Method for Computing Spectra of Photonic and Acoustic Band-Gap Materials: I. Scalar Case, J. Comput. Phys. 150 (1999) 468.

DOI: 10.1006/jcph.1999.6188

Google Scholar

[11] W. Kuang, Z. Hou, Y. Liu, The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals, Phys. Lett. A 332 (2004) 481.

DOI: 10.1016/j.physleta.2004.10.009

Google Scholar

[12] M.S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites, Phys. Rev. B 49 (1994) 2313.

DOI: 10.1103/physrevb.49.2313

Google Scholar

[13] Y. -H. Liu, C.C. Chang, R. -L. Chern, C.C. Chang, Phononic band gaps of elastic periodic structures: A homogenization theory study, Phys. Rev. B 75 (2007) 054104.

DOI: 10.1103/physrevb.75.054104

Google Scholar

[14] M. Sigalas, E.N. Economou, Band structure of elastic waves in two dimensional systems, Solid State Commun. 86 (1993) 141.

DOI: 10.1016/0038-1098(93)90888-t

Google Scholar

[15] J. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, M. Kushwaha, P. Halevi, Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems, J. Phys: Condensed Matter 6 (1994) 8759.

DOI: 10.1088/0953-8984/6/42/008

Google Scholar

[16] X. -Z. Zhou, Y. -S. Wang, C. Zhang, Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals, J. Appl. Phys. 106 (2009) 014903.

DOI: 10.1063/1.3159644

Google Scholar

[17] C. Kittel, P. McEuen, P. McEuen, Introduction to solid state physics, Wiley New York, (1976).

Google Scholar