Analysis of ZDDP Films on Sticking Defects by FEM during Hot Rolling of Ferritic Stainless Steel Strips

Article Preview

Abstract:

The aim of this study is to understand the effect of zinc dialkyl dithio phosphate (ZDDP) films on sticking defects during the hot rolling of ferritic stainless steel strips. The surface characterisation and crack propagation are very important for the sticking defects of ferritic stainless steel strip. A finite element method (FEM) model is constructed with different crack size ratios, in which the profile of the strip roughness and ZDDP films are taken into consideration. Simulation results show that the widths of cracks tend to be reduced with the introduction of ZDDP films, improving the sticking defects, which is confirmed by the hot rolling trials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-101

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Cortie, Ferritic stainless steels, in: Encyclopedia of Materials: Science and Technology, (2001) 3037-3039.

DOI: 10.1016/b0-08-043152-6/00543-x

Google Scholar

[2] S. Lee, D. Suh, S. Oh and W. Jin, Sticking Mechanism during Hot Rolling of Two Stainless Steels, Metallurgical and Materials Transactions A. 29A (1998) 696-702.

DOI: 10.1007/s11661-998-0151-9

Google Scholar

[3] W. Jin, J. -Y. Choi and Y. -Y. Lee, Effect of roll and rolling temperatures on sticking behavior of ferritic stainless steels, ISIJ International. 38 (1998) 739-743.

DOI: 10.2355/isijinternational.38.739

Google Scholar

[4] J. -x. Liu, Y. -j. Zhang and J. -t. Han, Test research on sticking mechanism during hot rolling of SUS 430 ferritic stainless steel, International Journal of Minerals, Metallurgy, and Materials. 17 (2010) 573-578.

DOI: 10.1007/s12613-010-0359-8

Google Scholar

[5] C. Kim, Y. Kim, J. Park, S. Lee, N. Kim and J. Yang, Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls, Metallurgical and Materials Transactions A. 36 (2005) 87-97.

DOI: 10.1007/s11661-005-0141-0

Google Scholar

[6] D. J. Ha, H. K. Sung, S. Lee, J. S. Lee and Y. D. Lee, Analysis and prevention of sticking occurring during hot rolling of ferritic stainless steel, Materials Science and Engineering: A. 507 (2009) 66-73.

DOI: 10.1016/j.msea.2008.11.062

Google Scholar

[7] S. Q. A. Rizvi, A Comprehensive Review of Lubricant Chemistry, Technology, Selection, and Design, ASTM International, (2009).

Google Scholar

[8] L. Hao, Z. Jiang, D. Wei, Y. Zhao, J. Zhao, M. Luo, L. Ma, S. Luo and L. Jiang, Effect of extreme pressure agents on the anti-scratch behaviour of high-speed steel material, Tribology International. 81 (2015) 19-28.

DOI: 10.1016/j.triboint.2014.07.009

Google Scholar

[9] L. Hao, Z. Jiang, X. Cheng, J. Zhao, D. Wei, L. Jiang, S. Luo, M. Luo and L. Ma, Effect of extreme pressure additives on the deformation behavior of oxide scale during the hot rolling of ferritic stainless steel strips, Tribology Transactions. (2015).

DOI: 10.1080/10402004.2015.1025931

Google Scholar

[10] Z. Y. Jiang, A. K. Tieu, W. H. Sun, J. N. Tang and D. B. Wei, Characterisation of thin oxide scale and its surface roughness in hot metal rolling, Materials Science and Engineering: A. 435–436 (2006) 434-438.

DOI: 10.1016/j.msea.2006.07.070

Google Scholar

[11] J. Tang, A. K. Tieu and Z. Y. Jiang, Modelling of oxide scale surface roughness in hot metal forming, Journal of Materials Processing Technology. 177 (2006) 126-129.

DOI: 10.1016/j.jmatprotec.2006.04.105

Google Scholar

[12] M. Krzyzanowski and J. H. Beynon, Modelling the Behaviour of Oxide Scale in Hot Rolling, ISIJ International. 46 (2006) 1533-1547.

DOI: 10.2355/isijinternational.46.1533

Google Scholar

[13] Y. Yu and J. G. Lenard, Estimating the resistance to deformation of the layer of scale during hot rolling of carbon steel strips, Journal of Materials Processing Technology. 121 (2002) 60-68.

DOI: 10.1016/s0924-0136(01)01176-1

Google Scholar

[14] M. F. Frolish, M. Krzyzanowski, W. M. Rainforth and J. H. Beynon, Oxide scale behaviour on aluminium and steel under hot working conditions, Journal of Materials Processing Technology. 177 (2006) 36-40.

DOI: 10.1016/j.jmatprotec.2006.03.224

Google Scholar

[15] N. J. Mosey, M. H. Müser and T. K. Woo, Molecular Mechanisms for the Functionality of Lubricant Additives, Science. 307 (2005) 1612-1615.

DOI: 10.1126/science.1107895

Google Scholar

[16] N. J. Mosey, T. K. Woo, M. Kasrai, P. R. Norton, G. M. Bancroft and M. H. Müser, Interpretation of experiments on ZDDP anti-wear films through pressure-induced cross-linking, Tribology Letters. 24 (2006) 105-114.

DOI: 10.1007/s11249-006-9040-9

Google Scholar