Numerical Simulations of 3D Metallic Auxetic Metamaterials in both Compression and Tension

Abstract:

Article Preview

Auxetic materials exhibit uncommon behaviour, i.e. they will shrink (expand) laterally under compression (tension). This novel feature has attracted intense research interest. However, most of previous works focus on auxetic behaviour in either compression or tension. Most of the auxetic materials are not symmetric in tension and compression under large deformation. Studies on the auxetic performance of metamaterials both in compression and tension are important but rare. As an extension of our previous research on compressive auxetic performance of 3D metallic auxetic metamaterials, numerical simulations were carried out to investigate the auxetic and other mechanical properties of the 3D metallic auxetic metamaterials in tension. The preliminary results indicated that the designed 3D metallic auxetic metamaterials exhibited better auxetic performance in compression than in tension. By increasing a pattern scale factor, auxetic performance of the 3D metallic auxetic metamaterials under tension can be improved. With proper adjustment of the pattern scale factor, an approximately symmetric auxetic performance could be achieved in compression and tension.

Info:

Periodical:

Edited by:

Yuantong Gu, Hong Guan, Emilie Sauret, Suvash Saha, Haifei Zhan, Rodney Persky

Pages:

565-570

Citation:

X. Ren et al., "Numerical Simulations of 3D Metallic Auxetic Metamaterials in both Compression and Tension", Applied Mechanics and Materials, Vol. 846, pp. 565-570, 2016

Online since:

July 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Nature, 353 (1991) 124-124.

[2] I.I. Argatov, R. Guinovart-Díaz, F.J. Sabina, International Journal of Engineering Science, 54 (2012) 42-57.

[3] V.L. Coenen, K.L. Alderson, Phys. Status Solidi B, 248 (2011) 66-72.

[4] J.B. Choi, R.S. Lakes, Journal of Materials Science, 27 (1992) 4678-4684.

[5] K.E. Evans, Endeavour, 15 (1991) 170-174.

[6] A. Alderson, K.L. Alderson, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221 (2007) 565-575.

[7] R. LAKES, Science, 235 (1987) 1038-1040.

[8] J.B. Choi, R.S. Lakes, Int J Fract, 80 (1996) 73-83.

[9] C.P. Chen, R.S. Lakes, Journal of Engineering Materials and Technology, 118 (1996) 285-288.

[10] F.L. Scarpa, F. Dallocchio, M. Ruzzene, San Diego, 2003, pp.468-474.

[11] J.N. Grima, A. Alderson, K.E. Evans, Phys. Status Solidi B, 242 (2005) 561-575.

[12] A. Alderson, K.L. Alderson, K.E. Evans, J.N. Grima, M.R. Williams, P.J. Davies, Phys. Status Solidi B, 242 (2005) 499-508.

[13] D. Attard, E. Manicaro, R. Gatt, J.N. Grima, Phys. Status Solidi B, 246 (2009) 2045-(2054).

DOI: https://doi.org/10.1002/pssb.200982035

[14] E. Chetcuti, B. Ellul, E. Manicaro, J. -P. Brincat, D. Attard, R. Gatt, J.N. Grima, Phys. Status Solidi B, 251 (2014) 297-306.

DOI: https://doi.org/10.1002/pssb.201384252

[15] L. Teik-Cheng, Smart Materials and Structures, 23 (2014) 045004.

[16] R.F. Almgren, Journal of Elasticity, 15 (1985) 427-430.

[17] K.W. Wojciechowski, Physics Letters A, 137 (1989) 60-64.

[18] G. Wei, S.F. Edwards, Physica A: Statistical Mechanics and its Applications, 258 (1998) 5-10.

[19] K.W. Wojciechowski, Journal of Physics A: Mathematical and General, 36 (2003) 11765.

[20] T.P. Hughes, A. Marmier, K.E. Evans, International Journal of Solids and Structures, 47 (2010) 1469-1476.

[21] P.V. Pikhitsa, M. Choi, H. -J. Kim, S. -H. Ahn, Phys. Status Solidi B, 246 (2009) 2098-2101.

[22] K. Nicholas, B. Gaetano, Smart Materials and Structures, 22 (2013) 084008.

[23] T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Advanced Materials, 24 (2012) 2710-2714.

DOI: https://doi.org/10.1002/adma.201200584

[24] F. Scarpa, P. Panayiotou, G. Tomlinson, The Journal of Strain Analysis for Engineering Design, 35 (2000) 383-388.

[25] N. Gaspar, X.J. Ren, C.W. Smith, J.N. Grima, K.E. Evans, Acta Materialia, 53 (2005) 2439-2445.

DOI: https://doi.org/10.1016/j.actamat.2005.02.006

[26] A. Alderson, J. Rasburn, S. Ameer-Beg, P.G. Mullarkey, W. Perrie, K.E. Evans, Industrial & Engineering Chemistry Research, 39 (2000) 654-665.

DOI: https://doi.org/10.1021/ie990572w

[27] N. Chan, K.E. Evans, Journal of Materials Science, 32 (1997) 5945-5953.

[28] V.R. Simkins, N. Ravirala, P.J. Davies, A. Alderson, K.L. Alderson, Phys. Status Solidi B, 245 (2008) 598-605.

[29] T.C. Lim, A. Alderson, K.L. Alderson, Phys. Status Solidi B, 251 (2014) 307-313.

[30] G.H. Zhang, O. Ghita, K.E. Evans, Composites Science and Technology, 117 (2015) 257-267.

[31] L. Yang, O. Harrysson, H. West, D. Cormier, International Journal of Solids and Structures, 69–70 (2015) 475-490.

[32] M. Yanhong, S. Fabrizio, Z. Dayi, Z. Bin, C. Lulu, H. Jie, Smart Materials and Structures, 22 (2013) 084012.

DOI: https://doi.org/10.1088/0964-1726/22/8/084012

[33] J. Shen, S. Zhou, X. Huang, Y.M. Xie, Phys. Status Solidi B, 251 (2014) 1515-1522.

[34] J. -H. Lee, J.P. Singer, E.L. Thomas, Advanced Materials, 24 (2012) 4782-4810.

[35] S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, Advanced Materials, 25 (2013) 5044-5049.

[36] E.A. Friis, R.S. Lakes, J.B. Park, Journal of Materials Science, 23 (1988) 4406-4414.

[37] G. He, Q. Tan, G. Jiang, Q. Li, Smart Materials and Structures, 23 (2014) 095011.

[38] D. Li, L. Dong, R.S. Lakes, Phys. Status Solidi B, 250 (2013) 1983-(1987).

[39] Z. Zhang, H. Hu, S. Liu, B. Xu, Phys. Status Solidi B, 250 (2013) 1996-(2001).

[40] M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, K. Bertoldi, Advanced Materials, 26 (2014) 2365-2370.

DOI: https://doi.org/10.1002/adma.201304464

[41] J. Dirrenberger, S. Forest, D. Jeulin, Computational Materials Science, 64 (2012) 57-61.

[42] X. Ren, J. Shen, A. Ghaedizadeh, H. Tian, Y.M. Xie, Smart Materials and Structures, 24 (2015) 095016.