Numerical Simulations of 3D Metallic Auxetic Metamaterials in both Compression and Tension

Article Preview

Abstract:

Auxetic materials exhibit uncommon behaviour, i.e. they will shrink (expand) laterally under compression (tension). This novel feature has attracted intense research interest. However, most of previous works focus on auxetic behaviour in either compression or tension. Most of the auxetic materials are not symmetric in tension and compression under large deformation. Studies on the auxetic performance of metamaterials both in compression and tension are important but rare. As an extension of our previous research on compressive auxetic performance of 3D metallic auxetic metamaterials, numerical simulations were carried out to investigate the auxetic and other mechanical properties of the 3D metallic auxetic metamaterials in tension. The preliminary results indicated that the designed 3D metallic auxetic metamaterials exhibited better auxetic performance in compression than in tension. By increasing a pattern scale factor, auxetic performance of the 3D metallic auxetic metamaterials under tension can be improved. With proper adjustment of the pattern scale factor, an approximately symmetric auxetic performance could be achieved in compression and tension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

565-570

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Nature, 353 (1991) 124-124.

Google Scholar

[2] I.I. Argatov, R. Guinovart-Díaz, F.J. Sabina, International Journal of Engineering Science, 54 (2012) 42-57.

Google Scholar

[3] V.L. Coenen, K.L. Alderson, Phys. Status Solidi B, 248 (2011) 66-72.

Google Scholar

[4] J.B. Choi, R.S. Lakes, Journal of Materials Science, 27 (1992) 4678-4684.

Google Scholar

[5] K.E. Evans, Endeavour, 15 (1991) 170-174.

Google Scholar

[6] A. Alderson, K.L. Alderson, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221 (2007) 565-575.

DOI: 10.1243/09544100jaero185

Google Scholar

[7] R. LAKES, Science, 235 (1987) 1038-1040.

Google Scholar

[8] J.B. Choi, R.S. Lakes, Int J Fract, 80 (1996) 73-83.

Google Scholar

[9] C.P. Chen, R.S. Lakes, Journal of Engineering Materials and Technology, 118 (1996) 285-288.

Google Scholar

[10] F.L. Scarpa, F. Dallocchio, M. Ruzzene, San Diego, 2003, pp.468-474.

Google Scholar

[11] J.N. Grima, A. Alderson, K.E. Evans, Phys. Status Solidi B, 242 (2005) 561-575.

Google Scholar

[12] A. Alderson, K.L. Alderson, K.E. Evans, J.N. Grima, M.R. Williams, P.J. Davies, Phys. Status Solidi B, 242 (2005) 499-508.

DOI: 10.1002/pssb.200460370

Google Scholar

[13] D. Attard, E. Manicaro, R. Gatt, J.N. Grima, Phys. Status Solidi B, 246 (2009) 2045-(2054).

DOI: 10.1002/pssb.200982035

Google Scholar

[14] E. Chetcuti, B. Ellul, E. Manicaro, J. -P. Brincat, D. Attard, R. Gatt, J.N. Grima, Phys. Status Solidi B, 251 (2014) 297-306.

DOI: 10.1002/pssb.201384252

Google Scholar

[15] L. Teik-Cheng, Smart Materials and Structures, 23 (2014) 045004.

Google Scholar

[16] R.F. Almgren, Journal of Elasticity, 15 (1985) 427-430.

Google Scholar

[17] K.W. Wojciechowski, Physics Letters A, 137 (1989) 60-64.

Google Scholar

[18] G. Wei, S.F. Edwards, Physica A: Statistical Mechanics and its Applications, 258 (1998) 5-10.

Google Scholar

[19] K.W. Wojciechowski, Journal of Physics A: Mathematical and General, 36 (2003) 11765.

Google Scholar

[20] T.P. Hughes, A. Marmier, K.E. Evans, International Journal of Solids and Structures, 47 (2010) 1469-1476.

Google Scholar

[21] P.V. Pikhitsa, M. Choi, H. -J. Kim, S. -H. Ahn, Phys. Status Solidi B, 246 (2009) 2098-2101.

Google Scholar

[22] K. Nicholas, B. Gaetano, Smart Materials and Structures, 22 (2013) 084008.

Google Scholar

[23] T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Advanced Materials, 24 (2012) 2710-2714.

DOI: 10.1002/adma.201200584

Google Scholar

[24] F. Scarpa, P. Panayiotou, G. Tomlinson, The Journal of Strain Analysis for Engineering Design, 35 (2000) 383-388.

Google Scholar

[25] N. Gaspar, X.J. Ren, C.W. Smith, J.N. Grima, K.E. Evans, Acta Materialia, 53 (2005) 2439-2445.

DOI: 10.1016/j.actamat.2005.02.006

Google Scholar

[26] A. Alderson, J. Rasburn, S. Ameer-Beg, P.G. Mullarkey, W. Perrie, K.E. Evans, Industrial & Engineering Chemistry Research, 39 (2000) 654-665.

DOI: 10.1021/ie990572w

Google Scholar

[27] N. Chan, K.E. Evans, Journal of Materials Science, 32 (1997) 5945-5953.

Google Scholar

[28] V.R. Simkins, N. Ravirala, P.J. Davies, A. Alderson, K.L. Alderson, Phys. Status Solidi B, 245 (2008) 598-605.

DOI: 10.1002/pssb.200777717

Google Scholar

[29] T.C. Lim, A. Alderson, K.L. Alderson, Phys. Status Solidi B, 251 (2014) 307-313.

Google Scholar

[30] G.H. Zhang, O. Ghita, K.E. Evans, Composites Science and Technology, 117 (2015) 257-267.

Google Scholar

[31] L. Yang, O. Harrysson, H. West, D. Cormier, International Journal of Solids and Structures, 69–70 (2015) 475-490.

Google Scholar

[32] M. Yanhong, S. Fabrizio, Z. Dayi, Z. Bin, C. Lulu, H. Jie, Smart Materials and Structures, 22 (2013) 084012.

Google Scholar

[33] J. Shen, S. Zhou, X. Huang, Y.M. Xie, Phys. Status Solidi B, 251 (2014) 1515-1522.

Google Scholar

[34] J. -H. Lee, J.P. Singer, E.L. Thomas, Advanced Materials, 24 (2012) 4782-4810.

Google Scholar

[35] S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, Advanced Materials, 25 (2013) 5044-5049.

DOI: 10.1002/adma.201301986

Google Scholar

[36] E.A. Friis, R.S. Lakes, J.B. Park, Journal of Materials Science, 23 (1988) 4406-4414.

Google Scholar

[37] G. He, Q. Tan, G. Jiang, Q. Li, Smart Materials and Structures, 23 (2014) 095011.

Google Scholar

[38] D. Li, L. Dong, R.S. Lakes, Phys. Status Solidi B, 250 (2013) 1983-(1987).

Google Scholar

[39] Z. Zhang, H. Hu, S. Liu, B. Xu, Phys. Status Solidi B, 250 (2013) 1996-(2001).

Google Scholar

[40] M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, K. Bertoldi, Advanced Materials, 26 (2014) 2365-2370.

DOI: 10.1002/adma.201304464

Google Scholar

[41] J. Dirrenberger, S. Forest, D. Jeulin, Computational Materials Science, 64 (2012) 57-61.

Google Scholar

[42] X. Ren, J. Shen, A. Ghaedizadeh, H. Tian, Y.M. Xie, Smart Materials and Structures, 24 (2015) 095016.

Google Scholar