[1]
Aste, T., Matteo, T.D., Saadatfar, M., Senden, T.J., Schröter, M., Swinney, H.L.: An invariant distribution in static granular media. Europhys. Lett. (EPL) 79(2), 24003 (2007). doi: 10. 1209/0295-5075/79/24003.
DOI: 10.1209/0295-5075/79/24003
Google Scholar
[2]
Aste, T., Di Matteo, T.: Emergence of Gamma distributions in granular materials and packing models. Phys. Rev. E 77(2), 021309 (2008).
DOI: 10.1103/physreve.77.021309
Google Scholar
[3]
Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005).
DOI: 10.1038/nature03805
Google Scholar
[4]
Ostojic, S., Somfai, E., Nienhuis, B.: Scale invariance and universality of force networks in static granular matter. Nature 439(7078), 828–830 (2006).
DOI: 10.1038/nature04549
Google Scholar
[5]
Peters, J.F., Muthuswamy,M., Wibowo, J., Tordesillas,A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005).
DOI: 10.1103/physreve.72.041307
Google Scholar
[6]
Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998).
DOI: 10.1103/physrevlett.80.61
Google Scholar
[7]
Thornton, C., Antony, S.J.: Quasi-static deformation of particulate media. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 356(1747), 2763–2782 (1998).
Google Scholar
[8]
Durán, O., Kruyt, N.P., Luding, S.: Micro-mechanical analysis of deformation characteristics of three-dimensional granular materials. Int. J. Solids Struct. 47(17), 2234–2245 (2010).
DOI: 10.1016/j.ijsolstr.2010.04.014
Google Scholar
[9]
Dullien, F.A.L.: Porous Media, 2nd edn. Academic Press, Inc., California (1992).
Google Scholar
[10]
Russell, A.R.: How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas. Géotechnique 64(5), 379–390 (2014).
DOI: 10.1680/geot.13.p.165
Google Scholar
[11]
Fonseca, J., Sim, W.W., Shire, T., O'Sullivan, C.: Microstructural analysis of sands with varying degrees of internal stability. Géotechnique 64(5), 405-411 (2014).
DOI: 10.1680/geot.13.t.014
Google Scholar
[12]
Sufian, A., Russell, A.R., Whittle, A.J. Saadatfar, M.: Pore shapes, volume distribution and orientations in monodisperse granular assemblies. Granular Matter. doi: 10. 1007/s10035-015-0590-0.
DOI: 10.1007/s10035-015-0590-0
Google Scholar
[13]
Al-Raoush, R., Thompson, K., Willson, C.S.: Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687–1700 (2003).
DOI: 10.2136/sssaj2003.1687
Google Scholar
[14]
Francois,N., Saadatfar,M., Cruikshank,R., Sheppard,A.: Geometrical frustration in amorphous and partially crystallized packings of spheres. Phys. Rev. Lett. 111(14), 148001 (2013).
DOI: 10.1103/physrevlett.111.148001
Google Scholar
[15]
Edwards, S.F., Oakeshott, R.B.S.: Theory of powders. Phys. A 157(3), 1080–1090 (1989).
Google Scholar
[16]
Diambra, A., Muir Wood, D., Russell, A.R., Ibraim, E.: Determination of fibre orientation distribution in reinforced sands. Géotechnique 57(7), 623–628 (2007).
DOI: 10.1680/geot.2007.57.7.623
Google Scholar