[1]
B.A. Cowles, High cycle fatigue in aircraft gas turbine - an industry prospective, International Journal of Fracture, vol. 80, pp.147-163, (1996).
DOI: 10.1007/bf00012667
Google Scholar
[2]
J. H. Griffin, A review of friction damping of turbine blade vibration, International Journal of Turbo and Jet Engines, vol. 7, pp.297-307, (1990).
DOI: 10.1515/tjj.1990.7.3-4.297
Google Scholar
[3]
B. Feeny, N. Hinrichs, and K. Popp, A historical review on dry friction and stick-slip phenomena, Applied Mechanics Reviews, vol. 51, no. 5, pp.321-341, (1998).
DOI: 10.1115/1.3099008
Google Scholar
[4]
L. Gaul and R. Nitsche, The role of friction In mechanical joints, Applied Mechanics Reviews, (2001).
Google Scholar
[5]
J. P. Den Hartog, Forced vibrations with combined coulomb and viscous friction, ASME trans., pp.107-115, (1931).
DOI: 10.1115/1.4022656
Google Scholar
[6]
G. C. K. Yeh, Forced vibrations of a two degree of freedom system with combined coulomb and viscous damping, The Journal of the Acoustical Society of America, vol. 39, no. 1, (1966).
DOI: 10.1121/1.1909863
Google Scholar
[7]
J. H. Griffin, Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils, Journal of Engineering for Power, vol. 102, pp.329-333, (1980).
DOI: 10.1115/1.3230256
Google Scholar
[8]
B. D. Yang and C. H. Menq, Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading : Part 1 - Stick-Slip Contact Kinematics, Journal of Engineering for Gas Turbines and Power, vol. 120, no. April 1998, pp.410-417, (1998).
DOI: 10.1115/1.2818138
Google Scholar
[9]
J. H. Wang and W. K. Chen, Investigation of the Vibration of a Blade With Friction Damper by HBM, Journal of Engineering for Gas Turbines and Power, vol. 115, no. April 1993, pp.294-299, (1993).
DOI: 10.1115/1.2906708
Google Scholar
[10]
K. Y. Sanliturk, D. J. Ewins, and A. B. Stanbridge, Underplatform Dampers for Turbine Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data, Journal of Engineering for Gas Turbines and Power, vol. 123, no. 4, p.919, (2001).
DOI: 10.1115/1.1385830
Google Scholar
[11]
E. P. Petrov, Explicit Finite Element Models of Friction Dampers in Forced Response Analysis of Bladed Disks, Journal of Engineering for Gas Turbines and Power, vol. 130, no. 2, p.022502, (2008).
DOI: 10.1115/1.2772633
Google Scholar
[12]
M. Hajžman, L. Pešek, J. Brůha, V. Zeman, and D. Rychecký, Basic optimization methodology for the design of friction damping in blade shrouds, in Proceedings of ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 7A, (2013).
DOI: 10.1115/detc2013-13443
Google Scholar
[13]
L. Pešek and L. Pust, Influence of dry friction damping on bladed disk vibration, in Vibration Problems ICOVP 2011: The 10th International Conference on Vibration Problems, pp.557-564, Springer Netherlands, (2011).
DOI: 10.1007/978-94-007-2069-5_75
Google Scholar
[14]
J. H. Griffin, An Integrated Approach for Friction Damper Design, Journal of Vibration and Acoustics, vol. 1, no. April 1990, pp.175-181, (1990).
Google Scholar
[15]
M. H. Jareland, A parametric study of a cottage-roof damper and comparison with experimental results, in Proceedings of ASME TURBOEXPO, pp.1-9, (2001).
Google Scholar
[16]
L. Panning, W. Sextro, and K. Popp, Optimization of interblade friction damper design, in Proceedings of ASME TURBOEXPO, pp.1-8, (2000).
DOI: 10.1115/2000-gt-0541
Google Scholar
[17]
C. M. Firrone, Measurement of the kinematics of two underplatform dampers with different geometry and comparison with numerical simulation, Journal of Sound and Vibration, vol. 323, pp.313-333, June (2009).
DOI: 10.1016/j.jsv.2008.12.019
Google Scholar
[18]
I. a. Sever, E. P. Petrov, and D. J. Ewins, Experimental and Numerical Investigation of Rotating Bladed Disk Forced Response Using Underplatform Friction Dampers, Journal of Engineering for Gas Turbines and Power, vol. 130, no. 4, p.042503, (2008).
DOI: 10.1115/1.2903845
Google Scholar
[19]
T. Berruti, A test rig for the investigation of the dynamic response of a bladed disk with underplatform dampers, Mechanics Research Communications, vol. 37, pp.581-583, Sept. (2010).
DOI: 10.1016/j.mechrescom.2010.07.008
Google Scholar
[20]
T. Berruti, C. M. Firrone, and M. M. Gola, A Test Rig for Noncontact Traveling Wave Excitation of a Bladed Disk With Underplatform Dampers, Journal of Engineering for Gas Turbines and Power, vol. 133, no. 3, p.032502, (2011).
DOI: 10.1115/1.4002100
Google Scholar
[21]
E. P. Petrov and D. J. Ewins, Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration, Journal of Turbomachinery, vol. 129, no. 1, p.143, (2007).
DOI: 10.1115/1.2372775
Google Scholar
[22]
R. K. Giridhar, P. V. Ramaiah, G. Krishnaiah, and S. G. Barad, Gas Turbine Blade Damper Optimization Methodology, Advances in Acoustics and Vibration, vol. 2012, pp.1-13, (2012).
DOI: 10.1155/2012/316761
Google Scholar
[23]
C. W. Schwingshackl, C. Joannin, L. Pesaresi, J. S. Green, and N. Hoffmann, Test method development for nonlinear damping extraction of dovetail joints, in Proceedings of the Society for Experimental Mechanics IMAC Conference, (2014).
DOI: 10.1007/978-3-319-04501-6_21
Google Scholar
[24]
S. Smith, J. Bilbao-Ludena, S. Catalfamo, M. Brake, P. Reuß, and C. W. Schwingshackl, The effects of boundary conditions, measurement techniques, and excitation type on measurements of the properties of mechanical joints, in Proceedings of the Society for Experimental Mechanics IMAC Conference, (2016).
DOI: 10.1007/978-3-319-15221-9_36
Google Scholar
[25]
E. P. Petrov and D. J. Ewins, State-of-the-art dynamic analysis for non-linear gas turbine structures, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 218, pp.199-211, Jan. (2004).
DOI: 10.1243/0954410041872906
Google Scholar
[26]
E. P. Petrov and D. J. Ewins, Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks, Journal of Turbomachinery, vol. 125, no. 2, p.364, (2003).
DOI: 10.1115/1.1539868
Google Scholar
[27]
E. P. Petrov, A High-Accuracy Model Reduction for Analysis of Nonlinear Vibrations in Structures With Contact Interfaces, Journal of Engineering for Gas Turbines and Power, vol. 133, no. 10, p.102503, (2011).
DOI: 10.1115/1.4002810
Google Scholar
[28]
C. W. Schwingshackl, E. P. Petrov, and D. J. Ewins, Effects of Contact Interface Parameters on Vibration of Turbine Bladed Disks With Underplatform Dampers, Journal of Engineering for Gas Turbines and Power, vol. 134, no. 3, p.032507, (2012).
DOI: 10.1115/1.4004721
Google Scholar
[29]
C. W. Schwingshackl, E. P. Petrov, and D. J. Ewins, Measured and estimated friction interface parameters in a nonlinear dynamic analysis, Mechanical Systems and Signal Processing, vol. 28, pp.574-584, Apr. (2012).
DOI: 10.1016/j.ymssp.2011.10.005
Google Scholar
[30]
C. W. Schwingshackl, Measurement of Friction Contact Parameters for Nonlinear Dynamic Analysis, in Proceedings of the Society for Experimental Mechanics IMAC Conference, (2012).
Google Scholar
[31]
J. S. Green, Controlling Forced Response of a High Pressure Turbine Blade. PhD thesis, KTH Royal Institute of Technology, (2006).
Google Scholar