[1]
E. Manoach, S. Samborski, A. Mitura, J. Warminski, Vibration based damage detection in composite beams under temperature variations using Poincare maps, Int. Journal of Mechanical Sciences, 62, 1, 120-132, (2012).
DOI: 10.1016/j.ijmecsci.2012.06.006
Google Scholar
[2]
J.M. Dhainaut, B. Duan, C. Mei, C.S. M Spottswood, H. Wolfe, Non-linear response of composite panels to random excitations at elevated temperatures, Proc. of 7th Int. Conf. Recent Advances in Str. Dynamics, Southampton, Vol. 2, 769-784, (2000).
Google Scholar
[3]
X.M. Su, J.H. Zhang, J. Wang, Y.Q. BI, D.F. Qie, Z.H. XIANG, M.D. Xue, Experimental investigation of the thermally induced vibration of a space boom section, Sci China-Phys Mech Astron, 58: 044601, 2015, doi: 10. 1007/s11433-014-5622-y.
DOI: 10.1007/s11433-014-5622-y
Google Scholar
[4]
E.A. Thorton, Thermal structures for aerospace applications. AIAA Education Series, (1996).
Google Scholar
[5]
W. Nowacki, Dynamic problems of thermoelasticity, The Netherlands, Noordhoff, Leyden, (1975).
Google Scholar
[6]
M. Amabili, S. Carra, Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges, Journal of Sound and Vibration 321, 2, 936-954, (2009).
DOI: 10.1016/j.jsv.2008.10.004
Google Scholar
[7]
S. Kazemirad, M. H. Ghayesh, M. Amabili, Thermo-mechanical nonlinear dynamics of a buckled axially moving beam, Archive of Applied Mechanics, Vol. 83, Issue 1, 25-42, (2013).
DOI: 10.1007/s00419-012-0630-8
Google Scholar
[8]
R.C. Zhou, D.Y. Xue, C. Mei, Finite element time time domain modal formulation for nonlinear flutter of composite panels, AIAA Journal, 32 (10), 2044-2052, (1994).
DOI: 10.2514/3.12250
Google Scholar
[9]
Y. Shi, R.Y.Y. Lee, C. Mei, Thermal postbuckling of composite plates using the finite element modal coordinate method. AIAA Journal, 37, 1035-1032, (1999).
DOI: 10.1080/014957399280779
Google Scholar
[10]
A. Warminska, E. Manoach, J. Warminski, Nonlinear dynamics of a reduced multimodal Timoshenko beam subjected to thermal and mechanical loadings, Meccanica, 49, 8, 1775-1793, (2014).
DOI: 10.1007/s11012-014-9891-3
Google Scholar
[11]
A. Warminska, E. Manoach, J. Warminski, S. Samborski, Regular and chaotic oscillations of a Timoshenko beam subjected to mechanical and thermal loadings, Continuum Mechanics and Thermodynamics, 2014, DOI 10. 1007/s00161-014-0381-6.
DOI: 10.1007/s00161-014-0381-6
Google Scholar
[12]
C. Mei, K. Abdel-Motagaly, R. Chen, Review of nonlinear panel flutter at supersonic and hypersonic speeds. Appl. Mech. Rev., 52 (10), 321-332, (1999).
DOI: 10.1115/1.3098919
Google Scholar
[13]
H. Chen, L. N. Virgin, Dynamic analysis of modal shifting and mode jumping in thermally buckled plates, J. Sound and Vibration, 278, 233-256, (2004).
DOI: 10.1016/j.jsv.2003.10.054
Google Scholar
[14]
E. Manoach, P. Ribeiro, Coupled, thermoelastic, large amplitude vibrations of Timoshenko beams, Int. J. Mech. Sci., 46, 1589-1606, (2004).
DOI: 10.1016/j.ijmecsci.2004.10.006
Google Scholar
[15]
P. Ribeiro, E. Manoach, The effect of temperature on the large amplitude vibrations of curved beams, J. Sound and Vibrations, 285, 1093-1107, (2005).
DOI: 10.1016/j.jsv.2004.09.010
Google Scholar
[16]
A.R. Kukreti, H.I. Issa, Dynamic analysis of nonlinear structures by pseudo-normal mode superposition method, Comp. & Struct., 19, 653-663, (1984).
DOI: 10.1016/0045-7949(84)90112-3
Google Scholar
[17]
E. Manoach, Dynamic response of elastoplastic Mindlin plate by mode superposition method, Journal of Sound and Vibrations, 162, 165-175, (1993).
DOI: 10.1006/jsvi.1993.1109
Google Scholar