Dynamics of Beams under Coupled Thermo-Mechanical Loading

Article Preview

Abstract:

An effect of thermal loading on vibrations of beams is investigated in the paper. A beam is considered as an extended Timoshenko beam model with nonlinear terms resulted from large deflections. Dynamics of the structure is analysed under thermal and mechanical loadings considering transient dynamics due to a heat pulse imposed to the beam. The numerical method for solving coupled thermo-mechanical problem is presented. On this basis the importance of the heat pulse intensity around the first resonance condition is demonstrated. The effect of the heat on the the complex transient dynamics of the beam and its qualitatively different response is shown as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-64

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Manoach, S. Samborski, A. Mitura, J. Warminski, Vibration based damage detection in composite beams under temperature variations using Poincare maps, Int. Journal of Mechanical Sciences, 62, 1, 120-132, (2012).

DOI: 10.1016/j.ijmecsci.2012.06.006

Google Scholar

[2] J.M. Dhainaut, B. Duan, C. Mei, C.S. M Spottswood, H. Wolfe, Non-linear response of composite panels to random excitations at elevated temperatures, Proc. of 7th Int. Conf. Recent Advances in Str. Dynamics, Southampton, Vol. 2, 769-784, (2000).

Google Scholar

[3] X.M. Su, J.H. Zhang, J. Wang, Y.Q. BI, D.F. Qie, Z.H. XIANG, M.D. Xue, Experimental investigation of the thermally induced vibration of a space boom section, Sci China-Phys Mech Astron, 58: 044601, 2015, doi: 10. 1007/s11433-014-5622-y.

DOI: 10.1007/s11433-014-5622-y

Google Scholar

[4] E.A. Thorton, Thermal structures for aerospace applications. AIAA Education Series, (1996).

Google Scholar

[5] W. Nowacki, Dynamic problems of thermoelasticity, The Netherlands, Noordhoff, Leyden, (1975).

Google Scholar

[6] M. Amabili, S. Carra, Thermal effects on geometrically nonlinear vibrations of rectangular plates with fixed edges, Journal of Sound and Vibration 321, 2, 936-954, (2009).

DOI: 10.1016/j.jsv.2008.10.004

Google Scholar

[7] S. Kazemirad, M. H. Ghayesh, M. Amabili, Thermo-mechanical nonlinear dynamics of a buckled axially moving beam, Archive of Applied Mechanics, Vol. 83, Issue 1, 25-42, (2013).

DOI: 10.1007/s00419-012-0630-8

Google Scholar

[8] R.C. Zhou, D.Y. Xue, C. Mei, Finite element time time domain modal formulation for nonlinear flutter of composite panels, AIAA Journal, 32 (10), 2044-2052, (1994).

DOI: 10.2514/3.12250

Google Scholar

[9] Y. Shi, R.Y.Y. Lee, C. Mei, Thermal postbuckling of composite plates using the finite element modal coordinate method. AIAA Journal, 37, 1035-1032, (1999).

DOI: 10.1080/014957399280779

Google Scholar

[10] A. Warminska, E. Manoach, J. Warminski, Nonlinear dynamics of a reduced multimodal Timoshenko beam subjected to thermal and mechanical loadings, Meccanica, 49, 8, 1775-1793, (2014).

DOI: 10.1007/s11012-014-9891-3

Google Scholar

[11] A. Warminska, E. Manoach, J. Warminski, S. Samborski, Regular and chaotic oscillations of a Timoshenko beam subjected to mechanical and thermal loadings, Continuum Mechanics and Thermodynamics, 2014, DOI 10. 1007/s00161-014-0381-6.

DOI: 10.1007/s00161-014-0381-6

Google Scholar

[12] C. Mei, K. Abdel-Motagaly, R. Chen, Review of nonlinear panel flutter at supersonic and hypersonic speeds. Appl. Mech. Rev., 52 (10), 321-332, (1999).

DOI: 10.1115/1.3098919

Google Scholar

[13] H. Chen, L. N. Virgin, Dynamic analysis of modal shifting and mode jumping in thermally buckled plates, J. Sound and Vibration, 278, 233-256, (2004).

DOI: 10.1016/j.jsv.2003.10.054

Google Scholar

[14] E. Manoach, P. Ribeiro, Coupled, thermoelastic, large amplitude vibrations of Timoshenko beams, Int. J. Mech. Sci., 46, 1589-1606, (2004).

DOI: 10.1016/j.ijmecsci.2004.10.006

Google Scholar

[15] P. Ribeiro, E. Manoach, The effect of temperature on the large amplitude vibrations of curved beams, J. Sound and Vibrations, 285, 1093-1107, (2005).

DOI: 10.1016/j.jsv.2004.09.010

Google Scholar

[16] A.R. Kukreti, H.I. Issa, Dynamic analysis of nonlinear structures by pseudo-normal mode superposition method, Comp. & Struct., 19, 653-663, (1984).

DOI: 10.1016/0045-7949(84)90112-3

Google Scholar

[17] E. Manoach, Dynamic response of elastoplastic Mindlin plate by mode superposition method, Journal of Sound and Vibrations, 162, 165-175, (1993).

DOI: 10.1006/jsvi.1993.1109

Google Scholar