Mass and Stiffness Matrices Updating Using the First Modal Data

Article Preview

Abstract:

This paper presents a new direct approach to simultaneously update the analytical mass and stiffness matrices in an undamped model .First, we assume that the difference between the finite element model and the real model is little. Second, only by utilizing the first order modal data orthogonal normalization conditions and eigen equations , we derive the updated matrices. Third, the method can maintain matrices symmetry and sparsity and preserve system connectivity. The merit of the proposed method is simple and accurate in a practical engineering computation. Finally,a numerical example is given to demonstrate the accuracy and effectiveness of the presented updating method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

834-839

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. B. Yang, Y. J. Chen, A new direct method for updating structural models based on measured modal data, Eng. Struct. 31(1) (2009) 32-42.

DOI: 10.1016/j.engstruct.2008.07.011

Google Scholar

[2] S. L. J. Hu, H. J. Li, S. Q. Wang, Cross-model cross-mode method for model updating, Mech. Syst. Signal Process. 21(4) (2007) 1690–1703.

DOI: 10.1016/j.ymssp.2006.07.012

Google Scholar

[3] J. E. Mottershead, M. I. Friswell, Model updating in structural dynamics: a survey, J. Sound Vib. 167(2) (1993) 347–375.

DOI: 10.1006/jsvi.1993.1340

Google Scholar

[4] J. Carvalho, B. N. Datta, W. Lin, C. Wang, Symmetry preserving eigenvalue embedding in finite element model updating of vibration structures, J. Sound Vib. 290(3-5) (2006) 839–864.

DOI: 10.1016/j.jsv.2005.04.030

Google Scholar

[5] Y. C. Kuo, W. W. Lin, S. F. Xu, New methods for finite element model updating problems, AIAA J. 44(6) (2006) 1310–1316.

DOI: 10.2514/1.15654

Google Scholar

[6] A. Berman, Mass matrix correction using an incomplete set of measured modes, AIAA J. 17(10) (1979) 1147-1148.

DOI: 10.2514/3.61290

Google Scholar

[7] M. Baruch, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J. 16(11) (1978) 1208-1210.

DOI: 10.2514/3.61032

Google Scholar

[8] A. Berman, E. J. Nagy, Improvement of a large analytical model using test data, AIAA J. 21(8) (1983) 1168-1173.

DOI: 10.2514/3.60140

Google Scholar

[9] A. M. Kabe, Stiffness matrix adjustment using mode data, AIAA J. 23(9) (1985) 1431-1436.

DOI: 10.2514/3.9103

Google Scholar

[10] P. G. Bakir, E. Reynders, G. De Roeck, Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm, J. Sound Vib. 305(1-2) (2007) 211–225.

DOI: 10.1016/j.jsv.2007.03.044

Google Scholar

[11] F. Charbel, M. H. Francois, Updating finite element dynamic models using an element-by element sensitivity methodology, AIAA J. 31(9) (1993) 1702–1711.

DOI: 10.2514/3.11833

Google Scholar

[12] J. E. Mottershead, M. Link, M. I. Friswell, The sensitivity method in finite element model updating: a tutorial, Mech. Syst. Signal Process. 25(7) (2011) 2275–2296.

DOI: 10.1016/j.ymssp.2017.03.009

Google Scholar

[13] M. Imregun, W. J. Visser, D. J. Ewins, Finite element model updating using frequency response function data – I: theory and initial investigation, Mech. Syst. Signal Process. 9(2) (1995) 187–202.

DOI: 10.1006/mssp.1995.0015

Google Scholar

[14] A. Esfandiari, F. Bakhtiari-Nejad, M. Sanayei, A. Rahai, Structural finite element model updating using transfer function data, Comput. Struct. 88(1-2) (2010) 54–64.

DOI: 10.1016/j.compstruc.2009.09.004

Google Scholar

[15] J. Carvalhoa, B. N. Datta, A. Guptac, M. Lagadapati, A direct method for model updating with incomplete measured data and without spurious modes, Syst. Signal Process. 21(7) (2007) 2715–2731.

DOI: 10.1016/j.ymssp.2007.03.001

Google Scholar

[16] X. Mao, H. Dai, Finite element model updating with positive definiteness and no spillover, Mech. Syst. Signal Process. 28 (2012) 387–398.

DOI: 10.1016/j.ymssp.2011.11.002

Google Scholar