Experimental and Analytical Studies on Magnetorheological Damper

Article Preview

Abstract:

This paper presents experimental and analytical study of magnetorheological damper. The experimental study has been conducted at 1.5 Hz frequency with varying current values by using hydraulic dynamic testing facility. The Bhingam MR damper model has been adopted to predict nonlinear hysteretic behaviour of magnetorheological (MR) damper and compare the results with experimental investigations. The result shows, good agreement between them.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Spaggiari, A. and Dragoni, E. (2012). Efficient dynamic modelling and characterization of a magnetorheological damper., Meccanica., 47(8), 2041-(2054).

DOI: 10.1007/s11012-012-9573-y

Google Scholar

[2] Dutta S. and Chakraborty G. (2014). Performance analysis of nonlinear vibration isolator with magneto-rheological damper. Journal of Sound and Vibration, 333(20), 5097-5114.

DOI: 10.1016/j.jsv.2014.05.028

Google Scholar

[3] McLaughlin G., Hu W. and Wereley N. M. (2014). Advanced magnetorheological damper with a spiral channel bypass valve. Journal of Applied Physics, 115(17), 17B532.

DOI: 10.1063/1.4869278

Google Scholar

[4] Esteki K., Bagchi A. and Sedaghati R. (2014). Dynamic analysis of electro-and magneto-rheological fluid dampers using duct flow models. Smart Materials and Structures, 23(3), 035016.

DOI: 10.1088/0964-1726/23/3/035016

Google Scholar

[5] Avinash B., Sundar S. S. and Gangadharan K. V. (2014).

Google Scholar

[6] Baek, W. K., Lee, J. S., Kang, T. H., and Ryu, S. W.: Quarter car vibration simulation using an emprical magneto-rheological (MR) damper model (2005).

Google Scholar

[7] Butz, T. and Von stryk, O.: Modelling and simulation of electro-and magnetorheological fluid dampers. ZAMM. 82(1), 3 (2002).

DOI: 10.1002/1521-4001(200201)82:1<3::aid-zamm3>3.0.co;2-o

Google Scholar

[8] Çeşmeci, Ş., and Engin, T. (2010). Modeling and testing of a field-controllable magnetorheological fluid damper. International Journal of Mechanical Sciences, 52(8), 1036-1046.

DOI: 10.1016/j.ijmecsci.2010.04.007

Google Scholar

[9] Zheng, L., Li, Y. N., Shao, J. and Sun, X. S. (2007).

Google Scholar

[10] Sapiński, B. and Filuś, J. (2003). Analysis of parametric models of MR linear damper., Journal of Theoretical and Applied Mechanics, 41(2), 215-240.

Google Scholar

[11] Yao, K., Zhao, X. and Hou, Z. (2009). Damping Characteristics Modeling and Simulation of MR Damper., In 2009 International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 2, pp.492-495). IEEE.

DOI: 10.1109/iciii.2009.276

Google Scholar

[12] Wang, J. and Meng, G. (2001).

Google Scholar

[13] Nguyen, Q. H., Choi, S. B. and Kim, K. S. (2009). Geometric optimal design of MR damper considering damping force, control energy and time constant., In Journal of Physics: Conference Series (Vol. 149, No. 1, p.012076). IOP Publishing.

DOI: 10.1088/1742-6596/149/1/012076

Google Scholar

[14] Yang, M. G., Li, C. Y. and Chen, Z. Q. (2013). A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment., Engineering Structures, 52, 434-445.

DOI: 10.1016/j.engstruct.2013.03.006

Google Scholar

[15] Berasategui, J., Elejabarrieta, M. J. and Bou-Ali, M. M. (2014). Characterization analysis of a MR damper., Smart Materials and Structures, 23(4), 045025.

DOI: 10.1088/0964-1726/23/4/045025

Google Scholar

[16] Braz-César, M. T. and Barros, R. (2012). Properties and numerical modeling of MR dampers., In ICEM15-15 th International Conference on Experimental Mechanics.

Google Scholar

[17] Peng, G. R., Li, W. H., Du, H., Deng, H. X. and Alici, G. (2014). Modelling and identifying the parameters of a magneto-rheological damper with a force-lag phenomenon., Applied Mathematical Modelling, 38(15), 3763-3773.

DOI: 10.1016/j.apm.2013.12.006

Google Scholar

[18] Sternberg, A., Zemp, R. and de la Llera, J. C. (2014). Multiphysics behavior of a magneto-rheological damper and experimental validation., Engineering Structures, 69, 194-205.

DOI: 10.1016/j.engstruct.2014.03.016

Google Scholar

[19] Mangal, S. K. and Kumar, A. (2014). Experimental and Numerical Studies of Magnetorheological (MR) Damper., Chinese Journal of Engineering, (2014).

DOI: 10.1155/2014/915694

Google Scholar

[20] Shivaram, A. C. and Gangadharan, K. V. (2007). Statistical modeling of a magneto-rheological fluid damper using the design of experiments approach., Smart materials and structures., 16(4), 1310.

DOI: 10.1088/0964-1726/16/4/044

Google Scholar

[21] Costa, E. and Branco, P. C. (2009).

Google Scholar

[22] Esteki, K., Bagchi, A. and Sedaghati, R. (2014). Dynamic analysis of electro and magneto-rheological fluid dampers using duct flow models., Smart Materials and Structures., 23(3), 035016.

DOI: 10.1088/0964-1726/23/3/035016

Google Scholar

[23] Zhou, Y., Wang, X., Zhang, X. and Li, W. (2009). Variable stiffness and damping magnetorheological isolator., Frontiers of Mechanical Engineering in China., 4(3), 310-315.

DOI: 10.1007/s11465-009-0039-4

Google Scholar

[24] Chooi, W. W. and Oyadiji, S. O. (2008). Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions., Computers & structures, 86(3), 473-482.

DOI: 10.1016/j.compstruc.2007.02.002

Google Scholar

[25] Metered, H., Bonello, P. and Oyadiji, S. O. (2010). The experimental identification of magnetorheological dampers and evaluation of their controllers., Mechanical Systems and Signal Processing, 24(4), 976-994.

DOI: 10.1016/j.ymssp.2009.09.005

Google Scholar