Design and Implementation of Remote Lab with Industrial Robot Accessible through the Web

Article Preview

Abstract:

This paper describes design and implementation of remote lab with industrial robot accessible through the web based on Moodle portal, Easy Java Simulations (EJS) and Arduino Sw & Hw. The main purpose of this lab is to improve study, training and programming knowledge in industrial and service robotics for students, teachers of secondary vocational schools and company workers that deal with problems that arise on real robotic workplaces. This lab allows the user to work from their homes and operates with industrial robot at real workplace. Such remote lab can also enable users to use expensive lab equipment, which is not usually available to all persons. Practical example of application of the lab with industrial robot on Department of Robotics, Technical University of Kosice, Slovakia is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-73

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Spyros Tzafestas: Web-Based Control and Robotics Education, intelligent Systems, Control and Automation: Science and Engineering, Volume 38, 2009, ISBN: 978-90-481-2504-3.

Google Scholar

[2] Sukop M., Varga J.: Multi-devices application with robot - software application for android devices. In: Transfer Inovácií. Roč. 29, 2014, s. 1-3. ISSN 1337-7094.

Google Scholar

[3] Daniel V. Neamtu, Ernesto Fabregas, Bart Wyns, Robin De Keyser, Sebastian Dormido, Clara M. Ionescu.: A Remote Laboratory for Mobile Robot Applications. In.: IFAC Proceedings Volumes, Volume 44, Issue 1, January 2011, Pages 7280–7285, 18th IFAC World Congress.

DOI: 10.3182/20110828-6-it-1002.00649

Google Scholar

[4] Župerl, Uroš; Virtič, Mateja Ploj.: Remote Controlled Laboratory as a Modern Form of Engineering Education. In.: Journal of Elementary Education / Revija za Elementarno Izobraževanje. mar/apr 2013, Vol. 6 Issue 1, pp.27-42. 16p. ISSN 1732 6729.

Google Scholar

[5] Hricko J., Havlík Š.: Design of Compact Compliant Devices – Mathematical Models vs. Experiments, In.: American Journal of Mechanical Engineering, 2015, Vol. 3, No. 6, 201-206, ISSN 2328-4102.

Google Scholar

[6] S.H. Chen, R. Chen, V. Ramakrishnan, S.Y. Hu, Y. Zhuang, C.C. Ko, Ben M. Chen.: Development of Remote Laboratory Experimentation through Internet. In.: Electrical and Control Engineering (ICECE), 2010 International Conference on, Wuhan, 2010, pp.815-818.

Google Scholar

[7] Sukop M.: Proposal of algorithms for cooperation among devices in aplication with robot. In: Transfer Inovácií. Roč. 29, 2014, s. 1-3. ISSN 1337-7094.

Google Scholar

[8] Chaos, D.; Chacón, J.; Lopez-Orozco, J.A.; Dormido, S. Virtual and Remote Robotic Laboratory Using EJS, MATLAB and LabVIEW. Sensors 2013, 13, 2595-2612.

DOI: 10.3390/s130202595

Google Scholar

[9] Jara Bravo, Carlos Alberto, and et al. An augmented reality interfaces for training robotics through the web,. En: Proceedings of the 40th International Symposium on Robotics. Barcelona: AER-ATP, 2009. ISBN 978-84-920933-8-0, pp.189-194.

Google Scholar

[10] Martínez García, Herminio; Gámiz Caro, Juan; Domingo Peña, Joan; Grau Saldes, Antoni.: Distance Training in Robotic Applications Thanks to a Proposal of Remote Laboratory. In: 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), Patras, 2007, pp.1180-1187.

DOI: 10.1109/efta.2007.4416915

Google Scholar

[11] K. Goldberg, S. Gentner, C. Sutter and J. Wiegley, The Mercury Project: a feasibility study for Internet robots, IEEE Robotics & Automation Magazine, 7 (2000) 35.

DOI: 10.1109/100.833573

Google Scholar

[12] K. Goldberg, M. Kusa hara, H. Dreyfus, A. Goldman, O. Grau, M. Gržinic, B. Hannaford, M. Idinopulos, M. Jay and E. Kac,. The robot in the garden: tele robotics and telepistemology in the age of the Internet, MIT Press, Cambridge, (2000).

Google Scholar

[13] K. Kosuge, J. Kikuchi and K. Takeo, VI SIT: A teleoperation system via the computer network, Beyond Webcams: an introduction to online robots, MIT Press, Cambridge, (2002).

Google Scholar

[14] R. Marín, P.J. Sanz, P. Nebot and R. Wirz, A Multimodal Interface to Control a Robot Arm via the Web: A Case Study on Remote Programming, IEEE Transactions. on Industrial Electronics, 52 (2005) 1506.

DOI: 10.1109/tie.2005.858733

Google Scholar

[15] F. A., Candelas, C.A. Jara and F. Torres, Flexible virtual and remote laboratory for teaching Robotics, 4th Int. Conf. on Multimedia and Information & Communication Technologies in Education, 3 (2006) (1959).

Google Scholar

[16] http: /www. opensourcephysics. org/items/detail. cfm?ID=12587.

Google Scholar

[17] NOVÁK, P. Mobilní roboty - pohony, senzory, řízení. Praha : Nakladatelství BEN - technická literatura, 2005. 248 s. ISBN 80-7300-141-1.

Google Scholar

[18] Vince, T., Kováč, D., Molnár, J.: VMLab in the Education, In: Sistemas y Tecnologías de Información: Actas de la 7ª Conferencia Ibérica de Sistemas y Tecnologías de Información: 20. - 22. 6. 2012: Madrid s. 334 - 338, Madrid : AISTI, 2012, ISBN 978-989-96247-7-1.

DOI: 10.17013/risti.22.20-36

Google Scholar

[19] Tolnay, M.: Manipulačné a dopravné systémy. 2006. STU. Bratislava. 18 - 22 s. ISBN 80-227-2379-7.

Google Scholar

[20] Sukop M.: Modification and improvement of image processing algorithms of robot soccer for other uses. In: Transfer Inovácií. Roč. 30, 2014, s. 1-3. ISSN 1337-7094.

Google Scholar

[21] Świć A., Zubrzycki J., Taranenko V.: Modelling and systemic analysis of models of dynamic systems of shaft machining. Applied Mechanics and Materials Vol. 282 (2013) pp.211-220.

DOI: 10.4028/www.scientific.net/amm.282.211

Google Scholar

[22] T. Mikolajczyk, J. Musial, L. Romanowski, A. Domagalski, L. Kamieniecki, M. Murawski, Multipurpose Mobile Robot, Applied Mechanics and Materials, vol. 282, (2013), 152-157.

DOI: 10.4028/www.scientific.net/amm.282.152

Google Scholar

[23] Olaru, A., Oprean, A., Olaru, S., Paune, D. Optimization of the neural network by using the LabVIEW instrumentation, IEEE ICMERA 2010 Proceedings, ISBN 978-1-4244-8867-4, IEEE catalog number CFP1057L-ART, pp.40-44, (2010).

DOI: 10.4028/www.scientific.net/amr.463-464.1011

Google Scholar

[24] N. Dlodlo and A.C. Smith, The Internet-of-things in remote-controlled laboratories, Proceedings of the 13th Annual Conference on World Wide Web Applications, Johannesburg, 14-16 September (2011).

Google Scholar

[25] Martin Kalúz, Luboš Cirka, Richard Valo, Miroslav Fikar.: ArPi Lab: A Low-cost Remote Laboratory for Control Education. In.: Proceedings of the 19th World Congress of the International Federation of Automatic Control [elektronický zdroj] : IFAC 2014: 19th World Congress of the International Federation of Automatic Control. Cape Town, South Africa, 24-29 August 2014. - [s. l. ] : IFAC, 2014. - ISBN 978-3-902823-62-5.

DOI: 10.3182/20140824-6-za-1003.00963

Google Scholar

[26] Popeová V. - Cubonová N. - Urícek J. - Kumicáková D.: Automatizácia strojárskej výroby. Žilina, 2002, ISBN 80-8070-009-5.

Google Scholar

[27] A. Mejías Borrero, M.A. Märquez Sänchez, J. M. Andújar Märquez, M. R. Sänchez Herrera, 10th IFAC Symposium Advances in Control Education. In.: A Complete Solution for Developing Remote Labs, IFAC Proceedings Volumes, Volume 46, Issue 17, 2013, Pages 96-101, ISSN 1474-6670, http: /dx. doi. org/10. 3182/20130828-3-UK-2039. 00027.

DOI: 10.3182/20130828-3-uk-2039.00027

Google Scholar

[28] Zimin, A.M., Korshunov, S.V., Shumov, A.V., and Troynov, V.I. (2013).

Google Scholar