[1]
F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, Granular Computing, 2006 IEEE International Conference, 2006, p.38 – 42.
DOI: 10.1109/grc.2006.1635754
Google Scholar
[2]
F. Smarandache, A geometric interpretation of the neutrosophic set — A generalization of the intuitionistic fuzzy set, Granular Computing (GrC), 2011 IEEE International Conference, 2011, p.602– 606.
DOI: 10.1109/grc.2011.6122665
Google Scholar
[3]
L. Zadeh, Fuzzy sets. Inform and Control, 8, 1965, pp.338-353.
Google Scholar
[4]
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, 1986, pp.87-96.
DOI: 10.1016/s0165-0114(86)80034-3
Google Scholar
[5]
H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued Neutrosophic Sets, Multisspace and Multistructure 4, 2010, pp.410-413.
Google Scholar
[6]
http: /fs. gallup. unm. edu/NSS.
Google Scholar
[7]
I. Deli, M. Ali, F. Smarandache, Bipolar neutrosophic sets and their application based on multi-criteria decision making problems, Advanced Mechatronic Systems (ICAMechS), 2015 International Conference, 2015, p.249 – 254.
DOI: 10.1109/icamechs.2015.7287068
Google Scholar
[8]
A. Ngoor and M.M. Jabarulla, Multiple labeling Approch For Finding shortest Path with Intuitionstic Fuzzy Arc Length, International Journal of Scientific and Engineering Research, V3, Issue 11, 2012, pp.102-106.
Google Scholar
[9]
A. Kumar, and M. Kaur, Solution of fuzzy maximal flow problems using fuzzy linear programming. World Academy of Science and Technology. 87, 2011, pp.28-31.
Google Scholar
[10]
A. Kumar and M. Kaur, A New Algorithm for Solving Shortest Path Problem on a Network with Imprecise Edge Weight, Applications and Applied Mathematics, Vol. 6, Issue 2, 2011, p.602 – 619.
Google Scholar
[11]
G. Kumar, R. K. Bajaj and N . Gandotra, "Algorithm for shortest path problem in a network with interval valued intuitionstic trapezoidal fuzzy number, Procedia Computer Science 70, 2015, pp.123-129.
DOI: 10.1016/j.procs.2015.10.056
Google Scholar
[12]
P. Jayagowri and G. Geetha Ramani, Using Trapezoidal Intuitionistic Fuzzy Number to Find Optimized Path in a Network, Volume 2014, Advances in Fuzzy Systems, 2014, 6 pages.
DOI: 10.1155/2014/183607
Google Scholar
[13]
S. Majumder and A. Pal, Shortest Path Problem on Intuitionistic Fuzzy Network, Annals of Pure and Applied Mathematics, Vol. 5, No. 1, November (2013).
Google Scholar
[14]
S. Broumi, M. Talea, A. Bakali, F. Smarandache, On Bipolar Single Valued Neutrosophic Graphs, Journal of New Theory, N11, 2016, pp.84-102.
DOI: 10.4028/www.scientific.net/amm.841.184
Google Scholar
[15]
S. Broumi, F. Smarandache, M. Talea and A. Bakali, An Introduction to Bipolar Single Valued Neutrosophic Graph Theory. Applied Mechanics and Materials, vol. 841, 2016, pp.184-191.
DOI: 10.4028/www.scientific.net/amm.841.184
Google Scholar
[16]
S. Broumi, M. Talea, F. Smarandache and A. Bakali, Single Valued Neutrosophic Graphs: Degree, Order and Size. IEEE World Congress on Computational Intelligence, 2016, 8 pages, in press.
DOI: 10.1109/fuzz-ieee.2016.7738000
Google Scholar
[17]
S. Broumi, F. Smarandache, M. Talea and A. Bakali, Decision-Making Method Based On the Interval Valued Neutrosophic Graph, FTC 2016 - Future Technologies Conference 2016, In press.
DOI: 10.1109/ftc.2016.7821588
Google Scholar
[18]
F. Smarandache, Types of Neutrosophic Graphs and neutrosophic Algebraic Structures together with their Applications in Technology, " seminar, Universitatea Transilvania din Brasov, Facultatea de Design de Produs si Mediu, Brasov, Romania 06 June (2015).
DOI: 10.31926/but.mif.2019.12.61.1.10
Google Scholar
[19]
F. Smarandache, Symbolic Neutrosophic Theory, Europanova asbl, Brussels, 2015, 195p.
Google Scholar
[20]
W. B. VasanthaKandasamy, K. Ilanthenral and F. Smarandache, Neutrosophic graphs: A New Dimension to Graph Theory. Kindle Edition. USA, 2015, 127p.
Google Scholar
[21]
S. Broumi, A. Bakali, M. Talea and F. Smarandache, Computation of Shortest Path Problem in a Network with Single Valued Neutrosophic Number Based on Ranking Method, 2016 (submitted).
DOI: 10.1109/isncc.2017.8071993
Google Scholar
[22]
S. Broumi, A. Bakali, M. Talea and F. Smarandache, Shortest Path Problem Under Interval Valued Neutrosphic Setting, 2016 (submitted).
DOI: 10.4028/www.scientific.net/amm.859.59
Google Scholar