Shortest Path Problem under Bipolar Neutrosphic Setting

Article Preview

Abstract:

This main purpose of this paper is to develop an algorithm to find the shortest path on a network in which the weights of the edges are represented by bipolar neutrosophic numbers. Finally, a numerical example has been provided for illustrating the proposed approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-66

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, Granular Computing, 2006 IEEE International Conference, 2006, p.38 – 42.

DOI: 10.1109/grc.2006.1635754

Google Scholar

[2] F. Smarandache, A geometric interpretation of the neutrosophic set — A generalization of the intuitionistic fuzzy set, Granular Computing (GrC), 2011 IEEE International Conference, 2011, p.602– 606.

DOI: 10.1109/grc.2011.6122665

Google Scholar

[3] L. Zadeh, Fuzzy sets. Inform and Control, 8, 1965, pp.338-353.

Google Scholar

[4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, 1986, pp.87-96.

DOI: 10.1016/s0165-0114(86)80034-3

Google Scholar

[5] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued Neutrosophic Sets, Multisspace and Multistructure 4, 2010, pp.410-413.

Google Scholar

[6] http: /fs. gallup. unm. edu/NSS.

Google Scholar

[7] I. Deli, M. Ali, F. Smarandache, Bipolar neutrosophic sets and their application based on multi-criteria decision making problems, Advanced Mechatronic Systems (ICAMechS), 2015 International Conference, 2015, p.249 – 254.

DOI: 10.1109/icamechs.2015.7287068

Google Scholar

[8] A. Ngoor and M.M. Jabarulla, Multiple labeling Approch For Finding shortest Path with Intuitionstic Fuzzy Arc Length, International Journal of Scientific and Engineering Research, V3, Issue 11, 2012, pp.102-106.

Google Scholar

[9] A. Kumar, and M. Kaur, Solution of fuzzy maximal flow problems using fuzzy linear programming. World Academy of Science and Technology. 87, 2011, pp.28-31.

Google Scholar

[10] A. Kumar and M. Kaur, A New Algorithm for Solving Shortest Path Problem on a Network with Imprecise Edge Weight, Applications and Applied Mathematics, Vol. 6, Issue 2, 2011, p.602 – 619.

Google Scholar

[11] G. Kumar, R. K. Bajaj and N . Gandotra, "Algorithm for shortest path problem in a network with interval valued intuitionstic trapezoidal fuzzy number, Procedia Computer Science 70, 2015, pp.123-129.

DOI: 10.1016/j.procs.2015.10.056

Google Scholar

[12] P. Jayagowri and G. Geetha Ramani, Using Trapezoidal Intuitionistic Fuzzy Number to Find Optimized Path in a Network, Volume 2014, Advances in Fuzzy Systems, 2014, 6 pages.

DOI: 10.1155/2014/183607

Google Scholar

[13] S. Majumder and A. Pal, Shortest Path Problem on Intuitionistic Fuzzy Network, Annals of Pure and Applied Mathematics, Vol. 5, No. 1, November (2013).

Google Scholar

[14] S. Broumi, M. Talea, A. Bakali, F. Smarandache, On Bipolar Single Valued Neutrosophic Graphs, Journal of New Theory, N11, 2016, pp.84-102.

DOI: 10.4028/www.scientific.net/amm.841.184

Google Scholar

[15] S. Broumi, F. Smarandache, M. Talea and A. Bakali, An Introduction to Bipolar Single Valued Neutrosophic Graph Theory. Applied Mechanics and Materials, vol. 841, 2016, pp.184-191.

DOI: 10.4028/www.scientific.net/amm.841.184

Google Scholar

[16] S. Broumi, M. Talea, F. Smarandache and A. Bakali, Single Valued Neutrosophic Graphs: Degree, Order and Size. IEEE World Congress on Computational Intelligence, 2016, 8 pages, in press.

DOI: 10.1109/fuzz-ieee.2016.7738000

Google Scholar

[17] S. Broumi, F. Smarandache, M. Talea and A. Bakali, Decision-Making Method Based On the Interval Valued Neutrosophic Graph, FTC 2016 - Future Technologies Conference 2016, In press.

DOI: 10.1109/ftc.2016.7821588

Google Scholar

[18] F. Smarandache, Types of Neutrosophic Graphs and neutrosophic Algebraic Structures together with their Applications in Technology, " seminar, Universitatea Transilvania din Brasov, Facultatea de Design de Produs si Mediu, Brasov, Romania 06 June (2015).

DOI: 10.31926/but.mif.2019.12.61.1.10

Google Scholar

[19] F. Smarandache, Symbolic Neutrosophic Theory, Europanova asbl, Brussels, 2015, 195p.

Google Scholar

[20] W. B. VasanthaKandasamy, K. Ilanthenral and F. Smarandache, Neutrosophic graphs: A New Dimension to Graph Theory. Kindle Edition. USA, 2015, 127p.

Google Scholar

[21] S. Broumi, A. Bakali, M. Talea and F. Smarandache, Computation of Shortest Path Problem in a Network with Single Valued Neutrosophic Number Based on Ranking Method, 2016 (submitted).

DOI: 10.1109/isncc.2017.8071993

Google Scholar

[22] S. Broumi, A. Bakali, M. Talea and F. Smarandache, Shortest Path Problem Under Interval Valued Neutrosphic Setting, 2016 (submitted).

DOI: 10.4028/www.scientific.net/amm.859.59

Google Scholar