[1]
B.P. Prakash, B.K. Sinha, Analysis of drive shaft, Int. J. Mech. Prod. Eng., 2 (2014) 2, 24-29.
Google Scholar
[2]
V.J. Ananth Vino, Dr. J.H. Hussain, Design and analysis of propeller shaft, Int. J. Innov. Res. Sci., Eng. Technol., 4 (2015) 8, 7311-7319.
Google Scholar
[3]
C. Elanchezhiana, B.V. Ramnathb, K.N. Sripada Raghavendrac, M. Muralidharand, G. Rekhae: submitted to Materials Today (2016).
Google Scholar
[4]
S.P. Raut, L.P. Raut, A review of various techniques used for shaft failure analysis, Int. J. Eng. Res. Gen. Sci., 2 (2014) 2, 50-54.
Google Scholar
[5]
R.A. Gujar, S.V. Bhaskar, Shaft design under fatigue loading by using modified Goodman Method, Int. J. Eng. Res. Appl., 3 (2013) 4, 1061-1066.
Google Scholar
[6]
S.H. Loewenthal, NASA Reference Publication 1123, Lewis Research Center, Cleveland, Ohio (1984).
Google Scholar
[7]
S. Kadam, G. Deshpande, A review on design analysis and optimization of centrifugal casting machine shaft, Int. J. Mod. Eng. Res., 5 (2015) 5, 1-5.
Google Scholar
[8]
S. Gujaran, S. Gholap, Fatigue analysis of drive shaft, Int. J. Res. Aero. Mech. Eng., 2 (2014) 10, 22-28.
Google Scholar
[9]
O.C. Zienkiewicz, Y. K. Cheung, The Finite Element Method in Structural and Continuum Mechanics, first ed., McGraw-Hill, London, (1979).
Google Scholar
[10]
G.P. Nikishkov, Introduction to the Finite Element Method, Lecture Notes. University of Aizu, Aizu-Wakamatsu 965-8580, Japan, (2004).
Google Scholar
[11]
Miss P. Dongare, Prof. Dr. S. Deshmukh, Static and modal analysis of composite drive shaft and development of regression equations, Int. J. Eng. Res. Technol., 1 (2012).
Google Scholar
[12]
Information on www. ansys. com.
Google Scholar
[13]
K. Thriveni, Dr. B.J. Chandraiah, Modeling and analysis of the crankshaft using ANSYS software, Int. J. Computa. Eng. Res., 3 (2013) 5, 84-89.
Google Scholar
[14]
Prof. O. de Weck, and Dr. I.Y. Kim, Engineering Design and Rapid Prototyping, MIT, 16. 810, (2004).
Google Scholar
[15]
A. Ravi, Design, comparison and analysis of a composite drive shaft for an automobile, Int. Re. App. Eng. Res., 4 (2014) 1, 21-28.
Google Scholar
[16]
P. Jayanaidu, M. Hibbatullah, Prof. P. Baskar, Analysis of a drive shaft for automobile applications, IOSR J. Mech. Civil Eng., 10 (2013) 2, 43-46.
Google Scholar
[17]
G. Sanjay, A.J. Kumar, Optimum design and analysis of a composite drive shaft for an automobile, Master's degree thesis-2007, Department of Mechanical Engineering, Bleking Institute of Technology, Karlskona, Sweden (2007).
Google Scholar
[18]
V.M. Faires, Design of Machine Elements, fourth ed., Macmillan, New York, (1967).
Google Scholar
[19]
S.R. Dharmadhikari, S.G. Mahakalkar, J.P. Giri, N.D. Khutafale, Design and analysis of composite drive shaft using ANSYS and genetic algorithm-a critical review, Int. J. Mod. Eng. Res., 3 (2013) 1, 490-496.
Google Scholar
[20]
M.F. Nasr, A.A. El-Zoghby, K.Y. Maalawi, B.S. Azzam, M.A. Badr, Torsional buckling optimization of composite drive shafts, World App. Sci. J., 33 (2015) 3, 517-524.
Google Scholar
[21]
Dr. Xiaobin Le, Mr. Zelong Le, Stress concentration factors due to typical geometric discontinuities for shaft design by numerical simulation, 120th ASEE Ann. Conf. Exposit., Atlanta, Georgia, (2013).
DOI: 10.18260/1-2--22476
Google Scholar