[1]
L. Mei, D. Infield, U. Eicker, V. Fux, Thermal modelling of a building with an integrated ventilated PV façade, Energ. Buildings, 35 (2003) p.605–617.
DOI: 10.1016/s0378-7788(02)00168-8
Google Scholar
[2]
Chr. Lamnatou, J.D. Mondol, D. Chemisana, C. Maurer, Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system, Renew. Sust. Energ. Reviews 45 (2015) p.36–51.
DOI: 10.1016/j.rser.2015.01.024
Google Scholar
[3]
C. Lai, S. Hokoi, Solar façades: A review, Build. and Environ. 91 (2015) p.152–165.
Google Scholar
[4]
T. T. Chow, A review on photovoltaic/thermal hybrid solar technology, Appl. Energ. 87 (2010) pp.365-379.
Google Scholar
[5]
I. Cerón, E. Caamaño-Martín, F. J. Neila, State-of-the-art, of building integrated photovoltaic products, Renew. Energ. 58 (2013) pp.127-133.
DOI: 10.1016/j.renene.2013.02.013
Google Scholar
[6]
P. Heinstein, C. Ballif, L. -E. Perret-Aebi, Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths, Green 3 (2013) pp.125-156.
DOI: 10.1515/green-2013-0020
Google Scholar
[7]
M. Bayoumi, D. Fink, Maximizing the performance of an energy generating façade in terms of energy saving strategies, Renew. Energ. 64 (2014) pp.294-305.
DOI: 10.1016/j.renene.2013.11.054
Google Scholar
[8]
D. Brandl, T. Mach, M. Grobbauer, C. Hochenauer, Analysis of ventilation effects and the thermal behaviour of multifunctional façade elements with 3D CFD models, Energ. Buildings 85 (2014) pp.305-320.
DOI: 10.1016/j.enbuild.2014.09.036
Google Scholar
[9]
L. Gaillard, S. Giroux-Julien, Ch. Ménézo, H. Pabiou, Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions, Sol. Energy 103 (2014) pp.223-241.
DOI: 10.1016/j.solener.2014.02.018
Google Scholar
[10]
T. Ma, H. Yang, Y. Zhang, L. Lu, X. Wang, Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook, Renew. Sust. Energ. Reviews 43 (2015) pp.1273-1284.
DOI: 10.1016/j.rser.2014.12.003
Google Scholar
[11]
S. Al-Saadi, Z. Zhai, Modeling phase change materials embedded in building enclosure: A review, Renew. Sust. Energ. Reviews 21 (2013) pp.659-673.
DOI: 10.1016/j.rser.2013.01.024
Google Scholar
[12]
F. Kuznik, D. David, K. Johannes, J. -J. Roux, A review on phase change materials integrated in building walls, Renew. Sust. Energ. Reviews 15 (2011) pp.379-391.
DOI: 10.1016/j.rser.2010.08.019
Google Scholar
[13]
Y. Dutil, D. R. Rousse, N. B. Salah, S. Lassue, L. Zalewski, A review on phase-change materials: Mathematical modeling and simulations, Renew. Sust. Energ. Reviews 15 (2011) pp.112-130.
DOI: 10.1016/j.rser.2010.06.011
Google Scholar
[14]
L. Aeleneia, R. Pereiraa, A. Ferreiraa, H. Gonçalvesa, A. Joyce, Building Integrated Photovoltaic System with integral thermal storage: a case study, Energy Procedia 58 (2014) pp.172-178.
DOI: 10.1016/j.egypro.2014.10.425
Google Scholar
[15]
J. A. Clarke, C. Johnstone, N. Kelly, P. A. Strachan, The simulation of photovoltaic-integrated façades, In: Proceedings of the International Building Performance Simulation Association Conference 1997, vol. 2, IBPSA, Prague, 1997, pp.189-195.
Google Scholar
[16]
Y. Chen, A. Athienitis, P. Fazio, Modelling of High-performance Envelope and Façade Integrated Photovoltaic/Solar Thermal Systems for High-Latitude Applications, In: Proceedings of eSim 2012: The Canadian Conference on Building Simulation, May 1-4, 2012 Halifax, pp.108-121.
DOI: 10.1061/9780784412473.020
Google Scholar
[17]
DesignBuilder EnergyPlus Simulation Documentation for DesignBuilder v4. 5.
Google Scholar
[18]
Information on https: /en. wikipedia. org/wiki/Orifice_plate.
Google Scholar
[19]
EnergyPlusTM Documentation, Engineering Reference, The Reference to EnergyPlus Calculation.
Google Scholar