Simulation Study on Thermal Performance of a Ventilated PV Façade Coupled with PCM

Article Preview

Abstract:

This paper presents a dynamic thermal model based on DesignBuilder simulation software platform, for a simple office building model with an integrated ventilated PV façade/solar air collector system in climatic conditions of Bratislava, Slovakia. Thermodynamic simulation has been applied in order to express thermal performance of a ventilated PV façade coupled with phase change material through the whole reference year. Attention is focused on simplified approaches which capture the important elements of the problem. The results of simulation show that natural ventilation of PV façade with added phase change material have ability decrease temperatures of PV panel during extreme days more than 20 °C and shift time of peak temperature even more than 5 hours.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-174

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Mei, D. Infield, U. Eicker, V. Fux, Thermal modelling of a building with an integrated ventilated PV façade, Energ. Buildings, 35 (2003) p.605–617.

DOI: 10.1016/s0378-7788(02)00168-8

Google Scholar

[2] Chr. Lamnatou, J.D. Mondol, D. Chemisana, C. Maurer, Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system, Renew. Sust. Energ. Reviews 45 (2015) p.36–51.

DOI: 10.1016/j.rser.2015.01.024

Google Scholar

[3] C. Lai, S. Hokoi, Solar façades: A review, Build. and Environ. 91 (2015) p.152–165.

Google Scholar

[4] T. T. Chow, A review on photovoltaic/thermal hybrid solar technology, Appl. Energ. 87 (2010) pp.365-379.

Google Scholar

[5] I. Cerón, E. Caamaño-Martín, F. J. Neila, State-of-the-art, of building integrated photovoltaic products, Renew. Energ. 58 (2013) pp.127-133.

DOI: 10.1016/j.renene.2013.02.013

Google Scholar

[6] P. Heinstein, C. Ballif, L. -E. Perret-Aebi, Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths, Green 3 (2013) pp.125-156.

DOI: 10.1515/green-2013-0020

Google Scholar

[7] M. Bayoumi, D. Fink, Maximizing the performance of an energy generating façade in terms of energy saving strategies, Renew. Energ. 64 (2014) pp.294-305.

DOI: 10.1016/j.renene.2013.11.054

Google Scholar

[8] D. Brandl, T. Mach, M. Grobbauer, C. Hochenauer, Analysis of ventilation effects and the thermal behaviour of multifunctional façade elements with 3D CFD models, Energ. Buildings 85 (2014) pp.305-320.

DOI: 10.1016/j.enbuild.2014.09.036

Google Scholar

[9] L. Gaillard, S. Giroux-Julien, Ch. Ménézo, H. Pabiou, Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions, Sol. Energy 103 (2014) pp.223-241.

DOI: 10.1016/j.solener.2014.02.018

Google Scholar

[10] T. Ma, H. Yang, Y. Zhang, L. Lu, X. Wang, Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook, Renew. Sust. Energ. Reviews 43 (2015) pp.1273-1284.

DOI: 10.1016/j.rser.2014.12.003

Google Scholar

[11] S. Al-Saadi, Z. Zhai, Modeling phase change materials embedded in building enclosure: A review, Renew. Sust. Energ. Reviews 21 (2013) pp.659-673.

DOI: 10.1016/j.rser.2013.01.024

Google Scholar

[12] F. Kuznik, D. David, K. Johannes, J. -J. Roux, A review on phase change materials integrated in building walls, Renew. Sust. Energ. Reviews 15 (2011) pp.379-391.

DOI: 10.1016/j.rser.2010.08.019

Google Scholar

[13] Y. Dutil, D. R. Rousse, N. B. Salah, S. Lassue, L. Zalewski, A review on phase-change materials: Mathematical modeling and simulations, Renew. Sust. Energ. Reviews 15 (2011) pp.112-130.

DOI: 10.1016/j.rser.2010.06.011

Google Scholar

[14] L. Aeleneia, R. Pereiraa, A. Ferreiraa, H. Gonçalvesa, A. Joyce, Building Integrated Photovoltaic System with integral thermal storage: a case study, Energy Procedia 58 (2014) pp.172-178.

DOI: 10.1016/j.egypro.2014.10.425

Google Scholar

[15] J. A. Clarke, C. Johnstone, N. Kelly, P. A. Strachan, The simulation of photovoltaic-integrated façades, In: Proceedings of the International Building Performance Simulation Association Conference 1997, vol. 2, IBPSA, Prague, 1997, pp.189-195.

Google Scholar

[16] Y. Chen, A. Athienitis, P. Fazio, Modelling of High-performance Envelope and Façade Integrated Photovoltaic/Solar Thermal Systems for High-Latitude Applications, In: Proceedings of eSim 2012: The Canadian Conference on Building Simulation, May 1-4, 2012 Halifax, pp.108-121.

DOI: 10.1061/9780784412473.020

Google Scholar

[17] DesignBuilder EnergyPlus Simulation Documentation for DesignBuilder v4. 5.

Google Scholar

[18] Information on https: /en. wikipedia. org/wiki/Orifice_plate.

Google Scholar

[19] EnergyPlusTM Documentation, Engineering Reference, The Reference to EnergyPlus Calculation.

Google Scholar