Assessment of Simple RANS Turbulence Models for Stall Delay Applications at Low Reynolds Number

Article Preview

Abstract:

This paper assesses the performance of three two-equation turbulence models viz. the SST k-ω, the RNG and realizable k for the simulations of a rotating blade in a wind tunnel experiment where k, ε and ω are turbulent kinetic energy, dissipation rate and specific dissipation respectively. The experiments showed the stall-delay phenomenon at the inboard of the rotating blade at a Reynolds number of 4800. This trend of suction peaks was captured by all three turbulence models albeit not matching the experimental coefficient of pressure accurately. All three models also showed radial flow at the inboard which is consistent with the experiments while the SST predicted the least k at low wall values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-265

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Leishman. Challenges in modeling the unsteady aerodynamics of wind turbines. Wind Energ. 5 (2000) 85-132.

DOI: 10.1002/we.62

Google Scholar

[2] J. L. Tangler, The nebulous art of using wind-tunnel airfoil data for predicting rotor performance. 21st ASME Wind Energy 2002, 190-196.

DOI: 10.2514/6.2002-40

Google Scholar

[3] H. Himmelskamp, Profile investigations on a rotating airscrew. PhD thesis, University of Göttingen. (1945).

Google Scholar

[4] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind energy handbook. John Wiley & Sons, (2001).

Google Scholar

[5] D. H. Wood, A three-dimensional analysis of stall-delay on a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 1 (1991) 1-14.

DOI: 10.1016/0167-6105(91)90002-e

Google Scholar

[6] M. Germano, U. Piomelli, P. Moin, W. Cabot, A dynamic subgrid-scale eddy viscosity model. Phys. Fluid. A: Fluid Dyn. 7 (1991) 1760-1765.

DOI: 10.1063/1.857955

Google Scholar

[7] K. Squires, U. Piomelli, Dynamic modeling of rotating turbulence. Turbulent Shear Flows 9 (1995) 71-83.

DOI: 10.1007/978-3-642-78823-9_6

Google Scholar

[8] I. Herráez, B. Stoevesandt, J. Peinke, Insight into rotational effects on a wind turbine blade using Navier–Stokes computations. Energ. 10 (1991) 6798-6822.

DOI: 10.3390/en7106798

Google Scholar

[9] G. Yu, X. Shen, X. Zhu, Z. Du, An insight into the separate flow and stall delay for HAWT. Renew. Energ. 1 (2011) 69-76.

DOI: 10.1016/j.renene.2010.05.021

Google Scholar

[10] J. Johansen, N. Sørensen, Aerofoil characteristics from 3D CFD rotor computations. Wind Energ. 4 (2004) 283-294.

DOI: 10.1002/we.127

Google Scholar

[11] C. Rumsey, P. Spalart, Turbulence model behavior in low Reynolds number regions of aerodynamic flowfields. AIAA J. 4 (2009) 982-993.

DOI: 10.2514/1.39947

Google Scholar

[12] D. Hu, O. Hua, Z. Du, A study on stall-delay for horizontal axis wind turbine. Renew. Energ. 6 (2006) 821–836.

DOI: 10.1016/j.renene.2005.05.002

Google Scholar

[13] H. M. Lee, Y. Wu, A Tomo-PIV study of the effects of freestream turbulence on stall delay of the blade of a horizontal-axis wind turbine. Wind Energ. 7 (2015) 1185-1205.

DOI: 10.1002/we.1754

Google Scholar