[1]
M. Luo, H. G. Yang, An improved general matrix algorithm for fault locating in distribution system, Power Syst. Protect. Contr. 40(5) (2012) 64-68.
Google Scholar
[2]
N. Mei, D. Y. Shi, Z. L. Yang, et al. A practica matrix based fault location algorithm for complex distribution network, Autom. Electr. Power Syst. 31(10) (2007) 66-70.
Google Scholar
[3]
J. Liu, X. Q. Zhang, X. Q. Tong, et al. Fault Location for Distribution Systems with Distributed Generations, Electr. Power Syst. Autom. 37(2) (2013) 36-42, 48.
Google Scholar
[4]
Z. N. Wei, H. He, Y. P. Zheng, A novel algorithm for fault location in power distribution network, Autom. Electr. Power Syst. 25(14) (2001) 31-33.
Google Scholar
[5]
N. Wu, Y. J Jiao, Fault location of distribution network based on plant growth simulation algorithm, Power Syst. Protect. Contr. 37(4) (2009) 23-28.
Google Scholar
[6]
C. W. Li, Z. Y. He, H. P. Zhang, et al. Fault location for radialized distribution networks based on BPSO algorithm, Power Syst. Protect. Contr. 37(7) (2009) 35-39.
Google Scholar
[7]
Q. Zhou, B. L. Zheng, R. J. Liao, et al. Fault-section location for distribution networks with DG baded on a hybrid algorithm of particle swarm optimization and differential evolution, Power Syst. Protect. Contr. 41(4) (2013) 33-37.
Google Scholar
[8]
L. T. Weng, K. P. Liu, X. L. Liu, et al. Chain table algorithm for fault location of complicated distribution network, Trans. China Electrotech. Soc. Autom. Electr. Power Syst. 24(5) (2009) 190-196.
Google Scholar
[9]
Z. Jingning, Z. Ren, Z. Kai, Application of improved ant colony algorithm in fault-section location of complex distribution network, Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011 4th International Conference on. IEEE, 2011, pp.1067-1071.
DOI: 10.1109/drpt.2011.5994053
Google Scholar
[10]
P. C. Liu, X. L. Li, Fault-section location of distribution network containing distributed generation based on the multiple-population genetic algorithm, Power Syst. Protect. Contr. 44(2) (2016) 36-41.
Google Scholar
[11]
Z. N. Wei, H. He, Y. P. Zheng, et al. A refined genetic algorithm for the fault sections location, Pro. CSEE, 24(5) (2002) 52-55.
Google Scholar
[12]
T. Zheng, Y. M. Pan, K. Y. Guo, Fault location of distribution network based on immune algorithm, Power Syst. Protect. Contr. 42(1) (2014) 77-83.
Google Scholar
[13]
Z. W. Liao, Y. M. Sun, Data mining technology and its application on power system, Autom. Electric Power Syst. 25(11) (2001) 62-66.
Google Scholar
[14]
Z. W. Liao, Y. M. Sun, A new approach for fault section diagnosis of distribution system based on data mining model, J. Tianjin Univ. 35(3) (2002) 322-326.
Google Scholar
[15]
J. Refonaa, M. Lakshmi, V. Vivek, Analysis and prediction of natural disaster using spatial data mining technique, Circuit, Power and Computing Technologies (ICCPCT), 2015 International Conference on. IEEE, 2015, pp.1-6.
DOI: 10.1109/iccpct.2015.7159379
Google Scholar
[16]
H. G. An, J. J. Koh, A study on the selection of bitmap join index using data mining techniques, Strategic Technology (IFOST), 2012 7th International Forum on. IEEE, 2012, pp.1-5.
DOI: 10.1109/ifost.2012.6357667
Google Scholar
[17]
H. C. Shu, X. F. Sun, D. J. Si, A rough set approach to distribution network fault location based on fault complain call information, Power Syst. Technol. 28(1) (2004) 64-66.
Google Scholar
[18]
Z. Zhu, Y. Sun, Application of quantum immune algorithm for fault-section estimation, Power Electronics and Intelligent Transportation System (PEITS), 2009 2nd International Conference on. IEEE, 2009, 1, pp.317-320.
DOI: 10.1109/peits.2009.5407006
Google Scholar
[19]
J. Zhai, B. Wan, S. Zhang, Probabilistic tolerance rough set model, Wavelet Analysis and Pattern Recognition (ICWAPR), 2015 International Conference on. IEEE, 2015, pp.214-219.
DOI: 10.1109/icwapr.2015.7295953
Google Scholar
[20]
S. Q. Tian, Y. N. Wang, Y. L. Zhang, et al. Fault location of distribution network based on rough set, J. Jiamusi Univ. (Natural Science Edition), 28(3) (2010) 337-339.
Google Scholar
[21]
A. R. Hedar, M. A. Omar, A. A. Sewisy, Rough sets attribute reduction using an accelerated genetic algorithm, Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS International Conference on. IEEE, 2015, pp.1-7.
DOI: 10.1109/snpd.2015.7176207
Google Scholar
[22]
Z. Y. Zhu,M. G. Lin, C. M. Xu, Attribute reduction approach based on immune algorithm, Comput. Eng. Sci. 34(1) (2012) 174-177.
Google Scholar
[23]
L. J. Ge, S. X. Wang, M. Zhang, et al. Power usage management & service platform in smart electricity utilization condition, Electric Power Autom. Equip. 35(3) (2015) 152-156.
Google Scholar