Fuzzy Comprehensive Evaluation for Two Kinds of Suspension Controllers

Article Preview

Abstract:

In order to improve the nonlinear and uncertain characteristics of the suspension system, using the differential geometry, the suspension system is transformed into two linear subsystems. The state feedback controller and the proportional integral derivative (PID) controller based on the genetic algorithm are designed, and the fuzzy comprehensive evaluation method based on the analytic hierarchy process is modified, which can evaluate the suspension performance of the controllers. The evaluation results show that the proportional integral derivative controller with the genetic algorithm is better than the state feedback controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

561-564

Citation:

Online since:

June 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Hasirci, A. Balikci, Z. Zabar, L. Birenbaum, A novel magnetic-levitation system: design, implementation, and nonlinear control. Plasm. Sci. 39(1) (2011) 492-497.

DOI: 10.1109/tps.2010.2053389

Google Scholar

[2] D. Roy, D. Saruhashi, S. Yamada, M. Iwahara, Fabrication and development of a novel flux-concentration type linear induction motor. Magn. 36(1) (2000) 3555-3557.

DOI: 10.1109/20.908896

Google Scholar

[3] C. L. Kuo, T. H. S. Li, N. R. Gue. Design of a novel fuzzy sliding-mode control for magnetic ball levitation system. J. Intell. Robot. Syst. 42 (2005) 295-316.

DOI: 10.1007/s10846-004-3026-3

Google Scholar

[4] H. Kurobe, T. Sekine, H. Asai, Alternating direction explicit-latency insertion method (ADE-LIM) for the fast transient simulation of transmission lines. Pack. Manuf. Tech. 2 (2012) 783-792.

DOI: 10.1109/tcpmt.2012.2186137

Google Scholar

[5] T. Sekine, H. Asai, Block-latency insertion method (Block-LIM) for fast transient simulation of tightly coupled transmission lines. Electromagn. Compatib. 53 (2011) 193-201.

DOI: 10.1109/temc.2010.2047108

Google Scholar

[6] B. L. J. Gysen, J. J. H. Paulides, J. L. G. Janssen, E. A. Lomonova, Active Electromagnetic.

Google Scholar

[7] P. Thomas. Manual for model 730: Magnetic Levitation System. USA: ECP, Educational Control Products. (1999).

Google Scholar

[8] S. J. Joo, J. H. Seo, Design and analysis of the nonlinear feedback linearizing-control for an electromagnetic suspension system. Contr. Syst. Tech. 5(1) (1996) 135-144.

DOI: 10.1109/87.553672

Google Scholar

[9] A. Rubaai, M. J. Castro-Sitiriche, DSP-based laboratory implementation of hybrid-fuzzy-PID controller using genetic optimization for high-performance motor drives. Ind. Appl. 44(6) (2008) 1977-(1986).

DOI: 10.1109/tia.2008.2006347

Google Scholar

[10] P. Dehghanian, M. Fotuhi-Firuzabad, S. Bagheri-Shouraki, A. A. Razi Kazemi, Critical component identification in reliability centered asset management of power distribution systems via fuzzy AHP. Syst. 6(4) (2012) 593-602.

DOI: 10.1109/jsyst.2011.2177134

Google Scholar