3D Position Based Human Movement Computation Using Multiple Images

Article Preview

Abstract:

This paper presents a computation method of human movement using 3D point, regarding a human as a rigid body. The movement computation method uses ray vectors cast from cameras. Ray vectors cast from cameras to feature points carry values of camera external parameter. Given four or more nonplanar known points of one input image, we calculate camera's external parameters of the input image using computed values from partially overlapping, adjacent input image frames using Newton's root finding algorithm. This is achieved by computing fixed points in the environment, camera distortion values and external parameters from stationary scenes, and camera external parameters of the input frame. Using computed camera external parameters, a tracked object's rigid object movement is computed using projected intersection points between ray vectors. Our method is demonstrated using various input images. The result is used in a human tracking.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

565-570

Citation:

Online since:

June 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zhang, A flexible new technique for camera calibration, IEEE Trans. Pattern Anal. Mach. Intell. 22(11) (2000) 1330-1334.

DOI: 10.1109/34.888718

Google Scholar

[2] J. Park, Multi-view 3d object reconstruction using coordinate transformation, Appl. Mech. Mater. 284-287 (2013) 2167-2170.

DOI: 10.4028/www.scientific.net/amm.284-287.2167

Google Scholar

[3] J. Park, Volumetric model body outline computation for an object tracking in a video stream, Appl. Mech. Mater. 479-480 (2013) 897-900.

DOI: 10.4028/www.scientific.net/amm.479-480.897

Google Scholar

[4] J. Park, S. Park, Improvement on zhang's camera calibration, Appl. Mech. Mater. 479-480 (2013) 170-173.

Google Scholar

[5] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2nd., (2004).

Google Scholar

[6] T. Moons, L. van Gool, M. Vergauwen, 3d reconstruction from multiple images, part I: Principles, Foundation and Trends in Computer Graphics and Vision, 4 (2008), 287-404.

DOI: 10.1561/0600000007

Google Scholar

[7] S. Seitz, C. Dyer, Photorealistic scene reconstruction by voxel coloring, IJCV, 35 (1999) 151-173.

Google Scholar

[8] T. Fromherz, M. Bichsel, Shape from multiple cues: Integrating local brightness information, in ICYCS, (1995).

Google Scholar

[9] O. Faugeras, E. Bras-Mehlman, J. D. Boissonnat, Representing stereo data with the delaunay triangulation, Artif. Intell. 44(1-2) (1990) 41-87.

DOI: 10.1016/0004-3702(90)90098-k

Google Scholar

[10] A. Laurentini, The visual hull concept for silhouette-based image understanding, IEEE Trans. PAMI, 16(2) (1994) 150-162.

DOI: 10.1109/34.273735

Google Scholar

[11] C. Choi, H. I. Christensen, Robust 3d visual tracking using particle ltering on the special euclidean group: A combined approach of keypoint and edge features, Int. J. Robot Res. 31 (2012) 498-519.

DOI: 10.1177/0278364912437213

Google Scholar

[12] T. Drummond, R. Cipolla, Real-time visual tracking of complex structures, IEEE PAMI, 24(7) (2002) 932-946.

DOI: 10.1109/tpami.2002.1017620

Google Scholar

[13] J. Park, 3D mosaic from images, Appl. Mech. Mater. 752-753 (2015) 1081-1084.

Google Scholar

[14] J. Park, Object movement computation from two images, Appl. Mech. Mater. 752-753 (2015) 1085-1089.

DOI: 10.4028/www.scientific.net/amm.752-753.1085

Google Scholar

[15] V. Prisacariu, I. Reid, Pwp3d: Real-time segmentation and tracking of 3d objects, Int. J. Comput. Vis. 98(3) (2012) 335-354.

DOI: 10.1007/s11263-011-0514-3

Google Scholar

[16] H. T. Nguyen, M. Worring, R. van den Boomgaard, A. W. M. Smeulders, Tracking nonparameterized object contours in video, IEEE Trans. Image Process. 11(9) (2002) 1081-1091.

DOI: 10.1109/tip.2002.802522

Google Scholar

[17] J. Park, T. Kim, S. Park, Level-of-detail canny edge based routing for object contour tracking, 17th International Conference on Computer Animation and Social Agents, 2004, pp.339-346.

Google Scholar

[18] M. Roh, T. Kim, J. Park, S. Lee, Accurate object contour tracking based on boundary edge selection, Patt. Recognit. 40(3) (2007) 931-943.

DOI: 10.1016/j.patcog.2006.06.014

Google Scholar

[19] L. S. Lasdon, A. D. Warren, A. Jain, M. Ratner, Design and testing of a generalized reduced gradient code for nonlinear programming, ACM Trans. Math. Software, 4 (1978) 34-50.

DOI: 10.1145/355769.355773

Google Scholar