[1]
M. Uchihara, K. Fukui, Tailored Blanks of High Strength Steels—Comparison of Welding Processes, Weld. World, 46(7-8) (2002) 41-48.
DOI: 10.1007/bf03263389
Google Scholar
[2]
R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Arch. Civil Mech. Eng. 8(2) (2008) 103-117.
DOI: 10.1016/s1644-9665(12)60197-6
Google Scholar
[3]
S. Keeler, M. Kimchi, Advanced High-Strength Steels Application Guidelines V5, 2015: WorldAutoSteel.
Google Scholar
[4]
E. Biro, S. Nayak, Y. Zhou, Changes in Mechanical Properties of Dual-Phase Steel Due to Post-Welded Microstructure and Loading Geometry. in Trends in Welding Research 2012: Proceedings of the 9th International Conference. 2013. ASM International.
Google Scholar
[5]
C. C. Tasan, et al., An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Ann. Rev. Mater. Res. 45(1) (2015) 391-431.
DOI: 10.1146/annurev-matsci-070214-021103
Google Scholar
[6]
M. Sarwar, R. Priestner, Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel, J. Mater. Sci. 31(8) (1996) 2091-(2095).
DOI: 10.1007/bf00356631
Google Scholar
[7]
A. Kumar, S. Singh, K. Ray, Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels, Mater. Sci. Eng. A, 474(1) (2008) 270-282.
DOI: 10.1016/j.msea.2007.05.007
Google Scholar
[8]
J. Gianetto, N. J. Smith, J. T. McGrath, and J. T. Bowker, Effect of composition and energy input on structure and properties of high-strength weld metals, WELDING JOURNAL-NEW YORK-, 1992. 71: p.407-s.
Google Scholar
[9]
E. Biro, J. R. McDermid, J. D. Embury, and Y. Zhou, Softening Kinetics in the Subcritical Heat-Affected Zone of Dual-Phase Steel Welds, Metallurgi. Mater. Trans. A, 41(9) (2010) 2348-2356.
DOI: 10.1007/s11661-010-0323-2
Google Scholar
[10]
N. Kapustka, N. C. Conrardy, S. Babu, and C. Albright. , Effect of GMAW process and material conditions on DP 780 and TRIP 780 welds, WELDING JOURNAL-NEW YORK-, 87(6) (2008) 135.
Google Scholar
[11]
A. Ramazania, Y. Lia, K. Mukherjeea, U. Prahla, W. Blecka, A. Abdurakhmanovb, M. Schleserb, and U. Reisgenb, Microstructure evolution simulation in hot rolled DP600 steel during gas metal arc welding, Comput. Mater. Sci. 68 (2013) 107-116.
DOI: 10.1016/j.commatsci.2012.09.009
Google Scholar
[12]
M. Węglowski, M. St, K. Kwieciński, K. Krasnowski, and R. Jachym, Characteristics of Nd: YAG laser welded joints of dual phase steel, Arch. Civ. Mech. Eng. 9(4) (2009) 85-97.
DOI: 10.1016/s1644-9665(12)60072-7
Google Scholar
[13]
S. R. Nathan, V. Balasubramanian, S. Malarvizhi, and A. G. Rao. , Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints, Def. Technol. 11(3) (2015) 308-317.
DOI: 10.1016/j.dt.2015.06.001
Google Scholar
[14]
G. K. Ahiale, Y. J. Oh, W. D. Choi, K. B. Lee and J. G. Jung, Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes, Metals Mater. Int. 19(5) (2013) 933-939.
DOI: 10.1007/s12540-013-5005-3
Google Scholar
[15]
N. Farabi, D. L. Chen, J. Li, Y. Zhou, and S. J. Dong, Microstructure and mechanical properties of laser welded DP600 steel joints, Mater. Sci. Eng. A, 527(4) (2010) 1215-1222.
DOI: 10.1016/j.msea.2009.09.051
Google Scholar
[16]
X. Mingsheng, E. Biro, Z. Tian, and Y. N. Zhou , Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels, ISIJ Int. 48(6) (2008) 809-814.
DOI: 10.2355/isijinternational.48.809
Google Scholar