Processes of Titanium-Dioxide Colloids for Working Electrodes of Dye-Sensitized Solar Cells

Article Preview

Abstract:

New titanium-dioxide (TiO2) colloids composed of nano-crystalline TiO2 and polydimethylsiloxane (PDMS) have been developed for use in the working electrodes of dye-sensitized solar cells (DSSCs). The surface morphology and electrical characteristics of the TiO2 colloid electrodes were studied. The analysis of the surface morphology of the TiO2 colloids was conducted by an atomic force microscope (AFM) and a field-emission scanning electron microscope (FE-SEM). The photovoltaic characteristics of the TiO2 colloids with different compositions were investigated. The TiO2 content of the colloids determined the photovoltaic conversion ability of DSSCs. Colorful colloids were implemented by adding pigments to the TiO2 colloids. The processes of the TiO2 colloids demonstrated the advantages of simple fabrication and low cost. The flexible property of the TiO2 colloids showed great potential for application in flexible optoelectronics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-59

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BP Statistical Review of World Energy, sixty fifth ed., (2016).

Google Scholar

[2] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell, Nature 261 (1976) 402-403.

DOI: 10.1038/261402a0

Google Scholar

[3] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[4] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[5] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.

Google Scholar

[6] Y. L. Lai, S. H. Chen, J. H. Lu, J. S. Ting, T. Y. Tsai, A new low-temperature fabrication method of dye-sensitized solar cells, Lect. Notes Electr. Eng. 234 (2013) 975-980.

DOI: 10.1007/978-1-4614-6747-2_113

Google Scholar

[7] W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, Grid type dye-sensitized solar cell module with carbon counter electrode, J. Photochem. Photobiol. A 194 (2008) 27-30.

DOI: 10.1016/j.jphotochem.2007.07.010

Google Scholar

[8] Y. L. Lai, L. Y. Tang, Advanced fabrication technology of nano-silver dye-sensitized solar cells, J. Precis. Mach. Manuf. Technol. 6 (2016) 1-10.

Google Scholar

[9] I. N. Obotowo, I. B. Obot, U. J. Ekpe, Organic sensitizers for dye-sensitized solar cell (DSSC): properties from computation, progress and future perspectives, J. Mol. Struct. 1122 (2016) 80-87.

DOI: 10.1016/j.molstruc.2016.05.080

Google Scholar

[10] I. A. Sahito, K. C. Sun, A. A. Arbab, M. B. Qadir, S. H. Jeong, Graphene coated cotton fabric as textile structured counter electrode for DSSC, Electrochim. Acta 173 (2015) 164-171.

DOI: 10.1016/j.electacta.2015.05.035

Google Scholar

[11] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, J. Mater. Chem. 9 (1999) 2971-2972.

DOI: 10.1039/a906005g

Google Scholar

[12] H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, N. Negishi, Preparation of TiO2 fibers with well-organized structures, J. Mater. Chem. 10 (2000) 2005-(2006).

DOI: 10.1039/b004543h

Google Scholar

[13] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 14 (1998) 3160-3163.

DOI: 10.1021/la9713816

Google Scholar

[14] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater. 11 (1999) 1307-1311.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[15] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett., 365 (2002) 300-304.

DOI: 10.1016/s0009-2614(02)01499-9

Google Scholar

[16] D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 25 (1954) 676-677.

DOI: 10.1063/1.1721711

Google Scholar

[17] T. Koida, H. Sai, M. Kondo, Application of hydrogen-doped In2O3 transparent conductive oxide to thin-film microcrystalline Si solar cells, Thin Solid Films 518 (2010) 2930-2933.

DOI: 10.1016/j.tsf.2009.08.060

Google Scholar

[18] J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, R. P. Mertens, Advanced cost-effective crystalline silicon solar cell technologies, Sol. Energy Mater. Sol. Cells 65 (2001) 249-259.

DOI: 10.1016/s0927-0248(00)00100-8

Google Scholar

[19] S. Calnan, A. N. Tiwari, High mobility transparent conducting oxides for thin film solar cells , Thin Solid Films 518 (2010) 1839-1849.

DOI: 10.1016/j.tsf.2009.09.044

Google Scholar

[20] G. Yang, A. Ingenito, O. Isabella, M. Zeman, IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts, Sol. Energy Mater. Sol. Cells 158 (2016) 84-90.

DOI: 10.1016/j.solmat.2016.05.041

Google Scholar

[21] J. K. Rath, M. Brinza, Y. Liu, A. Borreman, R. E. I. Schropp, Fabrication of thin film silicon solar cells on plastic substrate by very high frequency PECVD, Sol. Energy Mater. Sol. Cells 94 (2010) 1534-1541.

DOI: 10.1016/j.solmat.2010.01.013

Google Scholar

[22] B. Parida, G. Lim, J. Choi, S. Palei, K. Kim, Hydrogen passivation effect on the conversion efficiency of Si solar cells by low-energy proton implantation, Sol. Energy 122 (2015) 486-496.

DOI: 10.1016/j.solener.2015.08.041

Google Scholar